Suppr超能文献

基于机器学习和人工神经网络构建乙型肝炎相关肝细胞癌的诊断模型,并通过免疫测定揭示相关性。

Construction of a diagnostic model for hepatitis B-related hepatocellular carcinoma using machine learning and artificial neural networks and revealing the correlation by immunoassay.

机构信息

Clinical Medical College, Southwest Medical University, Luzhou, 646000, China.

Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, 81377, Germany.

出版信息

Tumour Virus Res. 2023 Dec;16:200271. doi: 10.1016/j.tvr.2023.200271. Epub 2023 Sep 27.

Abstract

HBV infection profoundly escalates hepatocellular carcinoma (HCC) susceptibility, responsible for a majority of HCC cases. HBV-driven immune-mediated hepatocyte impairment significantly fuels HCC progression. Regrettably, inconspicuous early HCC symptoms often culminate in belated diagnoses. Nevertheless, surgically treated early-stage HCC patients relish augmented five-year survival rates. In contrast, advanced HCC exhibits feeble responses to conventional interventions like radiotherapy, chemotherapy, and surgery, leading to diminished survival rates. This investigation endeavors to unearth diagnostic hallmark genes for HBV-HCC leveraging a bioinformatics framework, thus refining early HBV-HCC detection. Candidate genes were sieved via differential analysis and Weighted Gene Co-Expression Network Analysis (WGCNA). Employing three distinct machine learning algorithms unearthed three feature genes (HHIP, CXCL14, and CDHR2). Melding these genes yielded an innovative Artificial Neural Network (ANN) diagnostic blueprint, portending to alleviate patient encumbrance and elevate life quality. Immunoassay scrutiny unveiled accentuated immune damage in HBV-HCC patients relative to solitary HCC. Through consensus clustering, HBV-HCC was stratified into two subtypes (C1 and C2), the latter potentially indicating milder immune impairment. The diagnostic model grounded in these feature genes showcased robust and transferrable prognostic potentialities, introducing a novel outlook for early HBV-HCC diagnosis. This exhaustive immunological odyssey stands poised to expedite immunotherapeutic curatives' emergence for HBV-HCC.

摘要

HBV 感染极大地增加了肝细胞癌(HCC)的易感性,是大多数 HCC 病例的原因。HBV 驱动的免疫介导的肝细胞损伤极大地促进了 HCC 的进展。遗憾的是,不明显的早期 HCC 症状往往导致诊断滞后。然而,接受手术治疗的早期 HCC 患者的五年生存率显著提高。相比之下,晚期 HCC 对放疗、化疗和手术等常规干预的反应较弱,导致生存率降低。本研究旨在利用生物信息学框架发现诊断 HBV-HCC 的标志基因,从而改进早期 HBV-HCC 的检测。通过差异分析和加权基因共表达网络分析(WGCNA)筛选候选基因。采用三种不同的机器学习算法发现了三个特征基因(HHIP、CXCL14 和 CDHR2)。融合这些基因产生了一个创新的人工神经网络(ANN)诊断蓝图,有望减轻患者负担并提高生活质量。免疫测定分析显示,HBV-HCC 患者的免疫损伤较单纯 HCC 更为严重。通过共识聚类,将 HBV-HCC 分为两个亚型(C1 和 C2),后者可能表明免疫损伤较轻。基于这些特征基因的诊断模型展示了强大的可转移预后潜力,为早期 HBV-HCC 诊断带来了新的视角。这项全面的免疫学探索有望加速 HBV-HCC 的免疫治疗治疗方法的出现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f47a/10638043/11f44033e561/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验