Suppr超能文献

共生菌通过铁获取来改变宿主在沙门氏菌感染期间的营养免疫。

Iron acquisition by a commensal bacterium modifies host nutritional immunity during Salmonella infection.

机构信息

Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA.

Departments of Biochemistry and Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA.

出版信息

Cell Host Microbe. 2023 Oct 11;31(10):1639-1654.e10. doi: 10.1016/j.chom.2023.08.018. Epub 2023 Sep 29.

Abstract

During intestinal inflammation, host nutritional immunity starves microbes of essential micronutrients, such as iron. Pathogens scavenge iron using siderophores, including enterobactin; however, this strategy is counteracted by host protein lipocalin-2, which sequesters iron-laden enterobactin. Although this iron competition occurs in the presence of gut bacteria, the roles of commensals in nutritional immunity involving iron remain unexplored. Here, we report that the gut commensal Bacteroides thetaiotaomicron acquires iron and sustains its resilience in the inflamed gut by utilizing siderophores produced by other bacteria, including Salmonella, via a secreted siderophore-binding lipoprotein XusB. Notably, XusB-bound enterobactin is less accessible to host sequestration by lipocalin-2 but can be "re-acquired" by Salmonella, allowing the pathogen to evade nutritional immunity. Because the host and pathogen have been the focus of studies of nutritional immunity, this work adds commensal iron metabolism as a previously unrecognized mechanism modulating the host-pathogen interactions and nutritional immunity.

摘要

在肠道炎症期间,宿主的营养免疫会使微生物缺乏必需的微量营养素,如铁。病原体利用铁载体,包括肠菌素,来掠夺铁;然而,宿主蛋白乳铁蛋白-2会阻止铁结合的肠菌素,从而抵消这种铁竞争。尽管这种铁竞争发生在肠道细菌存在的情况下,但共生菌在涉及铁的营养免疫中的作用仍未得到探索。在这里,我们报告肠道共生菌拟杆菌通过分泌的铁载体结合脂蛋白 XusB 利用其他细菌(包括沙门氏菌)产生的铁载体来获取铁,并在炎症肠道中维持其弹性。值得注意的是,XusB 结合的肠菌素不太容易被乳铁蛋白-2 隔离,但可以被沙门氏菌“重新获取”,使病原体能够逃避营养免疫。由于宿主和病原体一直是营养免疫研究的重点,这项工作增加了共生菌铁代谢作为一种以前未被认识的调节宿主-病原体相互作用和营养免疫的机制。

相似文献

1
Iron acquisition by a commensal bacterium modifies host nutritional immunity during Salmonella infection.
Cell Host Microbe. 2023 Oct 11;31(10):1639-1654.e10. doi: 10.1016/j.chom.2023.08.018. Epub 2023 Sep 29.
2
Iron acquisition by a commensal bacterium modifies host nutritional immunity during infection.
bioRxiv. 2023 Jun 26:2023.06.25.546471. doi: 10.1101/2023.06.25.546471.
4
How pathogenic bacteria evade mammalian sabotage in the battle for iron.
Nat Chem Biol. 2006 Mar;2(3):132-8. doi: 10.1038/nchembio771.
5
Siderophores in Iron Metabolism: From Mechanism to Therapy Potential.
Trends Mol Med. 2016 Dec;22(12):1077-1090. doi: 10.1016/j.molmed.2016.10.005. Epub 2016 Nov 4.
7
Iron metabolism and infection.
Food Nutr Bull. 2007 Dec;28(4 Suppl):S515-23. doi: 10.1177/15648265070284S405.
8
The ferric enterobactin transporter Fep is required for persistent Salmonella enterica serovar typhimurium infection.
Infect Immun. 2013 Nov;81(11):4063-70. doi: 10.1128/IAI.00412-13. Epub 2013 Aug 19.
9
Siderophore-mediated iron acquisition by .
J Bacteriol. 2024 May 23;206(5):e0002424. doi: 10.1128/jb.00024-24. Epub 2024 Apr 9.

引用本文的文献

1
Structural basis of iron piracy by human gut .
bioRxiv. 2025 Aug 24:2024.04.15.589501. doi: 10.1101/2024.04.15.589501.
3
Immune-iron homeostasis deciphers resistance divergence to in ducks.
Front Microbiol. 2025 Jul 11;16:1627631. doi: 10.3389/fmicb.2025.1627631. eCollection 2025.
4
Viruses hijack FPN1 to disrupt iron withholding and suppress host defense.
Nat Commun. 2025 Jul 1;16(1):5912. doi: 10.1038/s41467-025-60031-w.
5
The gut microbiome connects nutrition and human health.
Nat Rev Gastroenterol Hepatol. 2025 Jun 4. doi: 10.1038/s41575-025-01077-5.
6
Ferric Uptake Regulator Contributes to HYS-Induced Iron Metabolic Disruption in .
Microorganisms. 2025 May 6;13(5):1081. doi: 10.3390/microorganisms13051081.
7
The potential impact of iron supply on the development of starved biofilm by modulating the liberation of extracellular DNA.
Front Microbiol. 2025 May 7;16:1526909. doi: 10.3389/fmicb.2025.1526909. eCollection 2025.
8
Iron at the crossroads of host-microbiome interactions in health and disease.
Nat Microbiol. 2025 May 21. doi: 10.1038/s41564-025-02001-y.
9
Commensal resilience: ancient ecological lessons for the modern microbiota.
Infect Immun. 2025 Jun 10;93(6):e0050224. doi: 10.1128/iai.00502-24. Epub 2025 May 19.
10
symbionts in infection: when a friend becomes an enemy.
Infect Immun. 2025 May 13;93(5):e0051124. doi: 10.1128/iai.00511-24. Epub 2025 Apr 2.

本文引用的文献

1
Human gut bacteria tailor extracellular vesicle cargo for the breakdown of diet- and host-derived glycans.
Proc Natl Acad Sci U S A. 2023 Jul 4;120(27):e2306314120. doi: 10.1073/pnas.2306314120. Epub 2023 Jun 26.
2
Outer membrane utilisomes mediate glycan uptake in gut Bacteroidetes.
Nature. 2023 Jun;618(7965):583-589. doi: 10.1038/s41586-023-06146-w. Epub 2023 Jun 7.
3
Structure of trimeric pre-fusion rabies virus glycoprotein in complex with two protective antibodies.
Cell Host Microbe. 2022 Sep 14;30(9):1219-1230.e7. doi: 10.1016/j.chom.2022.07.014. Epub 2022 Aug 18.
4
Microenvironmental Factors that Shape Bacterial Metabolites in Inflammatory Bowel Disease.
Front Cell Infect Microbiol. 2022 Jul 15;12:934619. doi: 10.3389/fcimb.2022.934619. eCollection 2022.
8
Complex extracellular biology drives surface competition during colony expansion in Bacillus subtilis.
ISME J. 2022 Oct;16(10):2320-2328. doi: 10.1038/s41396-022-01279-8. Epub 2022 Jul 5.
9
The microbiome and gut homeostasis.
Science. 2022 Jul;377(6601):eabp9960. doi: 10.1126/science.abp9960. Epub 2022 Jul 1.
10
Nutritional immunity: the battle for nutrient metals at the host-pathogen interface.
Nat Rev Microbiol. 2022 Nov;20(11):657-670. doi: 10.1038/s41579-022-00745-6. Epub 2022 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验