Biswas Sujay K, Bairagi Ankan, Nag Sudip, Bandopadhyay Aditya, Banerjee Indranath, Mondal Arindam, Chakraborty Suman
School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
Int J Biol Macromol. 2023 Dec 31;253(Pt 5):127137. doi: 10.1016/j.ijbiomac.2023.127137. Epub 2023 Sep 28.
We report a nucleic acid-based point of care testing technology for infectious disease detection at resource limited settings by integrating a low-cost portable device with machine learning-empowered quantitative colorimetric analytics that can be interfaced via a smartphone application. We substantiate our proposition by demonstrating the efficacy of this technology in detecting COVID-19 infection from human swab samples, using the RT-LAMP protocol. Comparison with gold standard results from real-time PCR evidences high sensitivity and specificity, ensuring simplicity, portability, and user-friendliness of the technology at the same time. Colorimetric analytics of the reaction output without necessitating the opening of the reaction microchambers enables execution of the complete test workflow without any laboratory control that may otherwise be required stringently for safeguarding against carryover contamination. Seamless sample-to-answer workflow and machine learning-based readout further assures minimal human intervention for the test readout, thus eliminating inevitable inaccuracies stemming from erroneous execution of the test as well as subjectivity in interpreting the outcome. Our results further indicate the possibilities of upgrading the technology to predict the pathogenic load on the infected patients akin to the cyclic threshold value of the real-time PCR, when calibrated with reference to a wide range of 'training' data for the machine learner, thereby putting forward the same as viable alternative to the resource-intensive PCR tests that cannot be made readily accessible at underserved community settings.
我们报告了一种基于核酸的即时检测技术,用于在资源有限的环境中进行传染病检测。该技术通过将低成本便携式设备与机器学习赋能的定量比色分析相结合,可通过智能手机应用程序进行连接。我们通过使用RT-LAMP协议证明该技术在检测人类拭子样本中的COVID-19感染方面的有效性,证实了我们的提议。与实时PCR的金标准结果进行比较,证明了该技术具有高灵敏度和特异性,同时确保了其简单性、便携性和用户友好性。对反应输出进行比色分析而无需打开反应微腔,使得整个测试工作流程无需任何实验室控制即可执行,否则为防止交叉污染可能需要严格的实验室控制。无缝的样本到结果工作流程和基于机器学习的读数进一步确保了测试读数的人工干预最少,从而消除了因测试执行错误以及结果解释主观性而产生的不可避免的误差。我们的结果还表明,当根据机器学习的广泛“训练”数据进行校准时,该技术有可能升级以预测感染患者的病原体载量,类似于实时PCR的循环阈值,从而提出该技术作为资源密集型PCR测试的可行替代方案,而在服务不足的社区环境中无法轻易获得PCR测试。