Suppr超能文献

使用机器学习模型预测硫芥诱导的眼部损伤的临床结果。

Predicting clinical outcome of sulfur mustard induced ocular injury using machine learning model.

机构信息

Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona, 74100, Israel.

Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona, 74100, Israel.

出版信息

Exp Eye Res. 2023 Nov;236:109671. doi: 10.1016/j.exer.2023.109671. Epub 2023 Sep 28.

Abstract

The sight-threatening sulfur mustard (SM) induced ocular injury presents specific symptoms in each clinical stage. The acute injury develops in all exposed eyes and may heal or deteriorate into chronic late pathology. Early detection of eyes at risk of developing late pathology may assist in providing unique monitoring and specific treatments only to relevant cases. In this study, we evaluated a machine-learning (ML) model for predicting the development of SM-induced late pathology based on clinical data of the acute phase in the rabbit model. Clinical data from 166 rabbit eyes exposed to SM vapor was used retrospectively. The data included a comprehensive clinical evaluation of the cornea, eyelids and conjunctiva using a semi-quantitative clinical score. A random forest classifier ML model, was trained to predict the development of corneal neovascularization four weeks post-ocular exposure to SM vapor using clinical scores recorded three weeks earlier. The overall accuracy in predicting the clinical outcome of SM-induced ocular injury was 73%. The accuracy in identifying eyes at risk of developing corneal neovascularization and future healed eyes was 75% and 59%, respectively. The most important parameters for accurate prediction were conjunctival secretion and corneal opacity at 1w and corneal erosions at 72 h post-exposure. Predicting the clinical outcome of SM-induced ocular injury based on the acute injury parameters using ML is demonstrated for the first time. Although the prediction accuracy was limited, probably due to the small dataset, it pointed out towards various parameters during the acute injury that are important for predicting SM-induced late pathology and revealing possible pathological mechanisms.

摘要

具有威胁视力的硫芥(SM)引起的眼部损伤在每个临床阶段都有特定的症状。急性损伤会出现在所有暴露的眼睛中,可能会愈合,也可能恶化成慢性晚期病理。早期发现有发生晚期病理风险的眼睛,可能有助于为相关病例提供独特的监测和特定的治疗。在这项研究中,我们评估了一种基于兔模型急性阶段临床数据预测 SM 诱导的晚期病理发展的机器学习(ML)模型。回顾性使用了 166 只暴露于 SM 蒸气的兔子眼睛的临床数据。这些数据包括使用半定量临床评分对角膜、眼睑和结膜进行全面的临床评估。使用三周前记录的临床评分,随机森林分类器 ML 模型被训练来预测 SM 蒸气暴露后四周角膜新生血管形成的发展。预测 SM 诱导的眼部损伤临床结果的总准确率为 73%。识别有发生角膜新生血管化和未来愈合风险的眼睛的准确率分别为 75%和 59%。准确预测的最重要参数是暴露后 1w 的结膜分泌物和角膜混浊以及 72h 的角膜糜烂。首次证明了使用 ML 基于急性损伤参数预测 SM 诱导的眼部损伤的临床结果。尽管预测准确率有限,可能是由于数据集较小,但它指出了急性损伤期间对预测 SM 诱导的晚期病理和揭示可能的病理机制很重要的各种参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验