Suppr超能文献

关于双电位动力学控制用于析氢反应电催化剂原子级合成的机理见解。

Mechanistic insights on Bi-potentiodynamic control towards atomistic synthesis of electrocatalysts for hydrogen evolution reaction.

作者信息

Srivastava Rohit Ranjan, Gautam Divyansh, Sahu Rajib, Shukla P K, Mukherjee Bratindranath, Srivastava Anchal

机构信息

Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.

Department of Metallurgical Engineering, Indian Institute of Technology-BHU, Varanasi, 221005, India.

出版信息

Sci Rep. 2023 Sep 30;13(1):16433. doi: 10.1038/s41598-023-43301-9.

Abstract

Herein, electrochemically assisted dissolution-deposition (EADD) is utilized over a three-electrode assembly to prepare an electrocatalyst for hydrogen evolution reaction (HER). Cyclic voltammetry is performed to yield atomistic loading of platinum (Pt) over SnS nanostructures via Pt dissolution from the counter electrode (CE). Astonishingly, the working electrode (WE) swept at 50 mV/s is found to compel Pt CE to experience 1000-3000 mV/s. The effect of different potential scan rates at the WE have provided insight into the change in Pt dissolution and its deposition behaviour over SnS in three electrode assembly. However, uncontrolled overpotentials at CE in a three-electrode assembly made Pt dissolution-deposition behavior complex. Here, for the first time, we have demonstrated bi-potentiodynamic control for dissolution deposition of Pt in four-electrode assembly over Nickel (Ni) foam. The dual cyclic voltammetry is applied to achieve better control and efficiency of the EADD process, engendering it as a pragmatically versatile and scalable synthesis technique.

摘要

在此,通过三电极组件利用电化学辅助溶解-沉积(EADD)来制备用于析氢反应(HER)的电催化剂。进行循环伏安法以通过对电极(CE)中铂(Pt)的溶解,在SnS纳米结构上实现铂的原子负载。令人惊讶的是,发现以50 mV/s扫描的工作电极(WE)迫使铂对电极经历1000 - 3000 mV/s。工作电极上不同电位扫描速率的影响为三电极组件中铂在SnS上的溶解及其沉积行为的变化提供了深入了解。然而,三电极组件中对电极处不受控制的过电位使铂的溶解-沉积行为变得复杂。在此,我们首次展示了在四电极组件中对泡沫镍(Ni)上铂的溶解沉积进行双电位动力学控制。应用双循环伏安法以实现对EADD过程更好的控制和效率,使其成为一种切实可行且可扩展的合成技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d549/10542813/1dc96280cb7b/41598_2023_43301_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验