Suppr超能文献

利用实例感知扩散模型增强结肠组织学图像中的腺体分割。

Enhancing gland segmentation in colon histology images using an instance-aware diffusion model.

机构信息

School of Information Science and Engineering, Shandong Normal University, Jinan, 250358, China.

Ulsan Ship and Ocean College, Ludong University, Yantai, 264025, China.

出版信息

Comput Biol Med. 2023 Nov;166:107527. doi: 10.1016/j.compbiomed.2023.107527. Epub 2023 Sep 22.

Abstract

In pathological image analysis, determination of gland morphology in histology images of the colon is essential to determine the grade of colon cancer. However, manual segmentation of glands is extremely challenging and there is a need to develop automatic methods for segmenting gland instances. Recently, due to the powerful noise-to-image denoising pipeline, the diffusion model has become one of the hot spots in computer vision research and has been explored in the field of image segmentation. In this paper, we propose an instance segmentation method based on the diffusion model that can perform automatic gland instance segmentation. Firstly, we model the instance segmentation process for colon histology images as a denoising process based on a diffusion model. Secondly, to recover details lost during denoising, we use Instance Aware Filters and multi-scale Mask Branch to construct global mask instead of predicting only local masks. Thirdly, to improve the distinction between the object and the background, we apply Conditional Encoding to enhance the intermediate features with the original image encoding. To objectively validate the proposed method, we compared several state-of-the-art deep learning models on the 2015 MICCAI Gland Segmentation challenge (GlaS) dataset (165 images), the Colorectal Adenocarcinoma Glands (CRAG) dataset (213 images) and the RINGS dataset (1500 images). Our proposed method obtains significantly improved results for CRAG (Object F1 0.853 ± 0.054, Object Dice 0.906 ± 0.043), GlaS Test A (Object F1 0.941 ± 0.039, Object Dice 0.939 ± 0.060), GlaS Test B (Object F1 0.893 ± 0.073, Object Dice 0.889 ± 0.069), and RINGS dataset (Precision 0.893 ± 0.096, Dice 0.904 ± 0.091). The experimental results show that our method significantly improves the segmentation accuracy, and the experiment results demonstrate the efficacy of the method.

摘要

在病理图像分析中,确定结肠组织学图像中的腺体形态对于确定结肠癌的分级至关重要。然而,手动分割腺体极具挑战性,因此需要开发自动分割腺体实例的方法。最近,由于强大的去噪管道,扩散模型已成为计算机视觉研究的热点之一,并在图像分割领域得到了探索。在本文中,我们提出了一种基于扩散模型的实例分割方法,可以实现自动的腺体实例分割。首先,我们将结肠组织学图像的实例分割过程建模为基于扩散模型的去噪过程。其次,为了恢复去噪过程中丢失的细节,我们使用实例感知滤波器和多尺度掩模分支来构建全局掩模,而不是仅预测局部掩模。第三,为了提高目标与背景之间的区分度,我们应用条件编码来增强具有原始图像编码的中间特征。为了客观地验证所提出的方法,我们在 2015 年 MICCAI 腺体分割挑战赛(GlaS)数据集(165 张图像)、结直肠腺癌腺体(CRAG)数据集(213 张图像)和 RINGS 数据集(1500 张图像)上比较了几种最先进的深度学习模型。我们提出的方法在 CRAG(目标 F1 0.853 ± 0.054,目标 Dice 0.906 ± 0.043)、GlaS Test A(目标 F1 0.941 ± 0.039,目标 Dice 0.939 ± 0.060)、GlaS Test B(目标 F1 0.893 ± 0.073,目标 Dice 0.889 ± 0.069)和 RINGS 数据集(精度 0.893 ± 0.096,Dice 0.904 ± 0.091)上取得了显著提高的结果。实验结果表明,我们的方法显著提高了分割精度,实验结果证明了该方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验