Suppr超能文献

结肠组织学图像中的腺体分割:glas 挑战赛

Gland segmentation in colon histology images: The glas challenge contest.

机构信息

Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK.

Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.

出版信息

Med Image Anal. 2017 Jan;35:489-502. doi: 10.1016/j.media.2016.08.008. Epub 2016 Sep 3.

Abstract

Colorectal adenocarcinoma originating in intestinal glandular structures is the most common form of colon cancer. In clinical practice, the morphology of intestinal glands, including architectural appearance and glandular formation, is used by pathologists to inform prognosis and plan the treatment of individual patients. However, achieving good inter-observer as well as intra-observer reproducibility of cancer grading is still a major challenge in modern pathology. An automated approach which quantifies the morphology of glands is a solution to the problem. This paper provides an overview to the Gland Segmentation in Colon Histology Images Challenge Contest (GlaS) held at MICCAI'2015. Details of the challenge, including organization, dataset and evaluation criteria, are presented, along with the method descriptions and evaluation results from the top performing methods.

摘要

结直肠腺癌起源于肠腺结构,是最常见的结肠癌形式。在临床实践中,病理学家利用肠腺的形态,包括结构外观和腺形成,来告知预后并为个体患者制定治疗计划。然而,实现癌症分级的良好观察者间和观察者内可重复性仍然是现代病理学的主要挑战。一种定量腺体形态的自动化方法是解决该问题的一种途径。本文概述了在 2015 年 MICCAI 会议上举办的结肠组织学图像中的腺体分割挑战赛(GlaS)。挑战赛的详细信息,包括组织、数据集和评估标准,以及表现最佳方法的方法描述和评估结果都有所呈现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验