Suppr超能文献

涉及子类时的三类新准确度度量及其置信区间估计。

A new accuracy metric under three classes when subclasses are involved and its confidence interval estimation.

机构信息

Department of Biostatistics, University at Buffalo, Buffalo, New York, USA.

出版信息

Stat Med. 2023 Dec 10;42(28):5207-5228. doi: 10.1002/sim.9908. Epub 2023 Oct 2.

Abstract

"Compound multi-class classification" refers to the setting where three or more main classes are involved and at least one of the main classes have multiple subclasses. A common practice in evaluating biomarker performance under "compound multi-class classification" is "subclasses pooling." In this article, we first explore the downsides of accuracy metrics based on pooled data. Then we propose a new accuracy measure proper for "compound multi-class classification" with three ordinal main classes, namely "volume under compound surface ( )." The proposed evaluates the accuracy of a biomarker appropriately by identifying main classes without requiring specification of an ordering for marker values of subclasses within each main class. For confidence interval estimation of , both parametric and nonparametric methods are studied, and simulation studies are carried out to assess coverage probabilities. A subset of Alzheimer's Disease Neuroimaging Initiative study dataset is analyzed.

摘要

“复合多类分类”是指涉及三个或更多主类,且至少有一个主类具有多个子类的情况。在评估“复合多类分类”下的生物标志物性能时,常用的方法是“子类合并”。在本文中,我们首先探讨了基于合并数据的准确率度量的缺点。然后,我们提出了一种新的适合于三个有序主类的“复合多类分类”的准确率度量方法,即“复合曲面下的体积( )”。所提出的 方法通过识别主类,而无需指定每个主类中子类标记值的顺序,从而适当地评估生物标志物的准确性。对于 的置信区间估计,研究了参数和非参数方法,并进行了模拟研究以评估覆盖率概率。分析了阿尔茨海默病神经影像学倡议研究数据集的一个子集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验