Li Jingjing, Huang Fuyi, Zhang Guohui, Zhang Zixing, Zhang Xian
Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.
University of Chinese Academy of Sciences, Beijing, China.
Front Chem. 2023 Sep 15;11:1201734. doi: 10.3389/fchem.2023.1201734. eCollection 2023.
In recent years, the utilization of flow cytometry for quantitative microplastic analysis has gained prominence. However, the current methods have some drawbacks that need to be improved. The present study aims to enhance the flow cytometry detection protocols for Nile red (NR) stained microplastics, facilitating distinct microplastic and nanoplastic enumeration. By elevating dimethyl sulfoxide (DMSO) concentration to 20%-30% within the solution, NR solubility improved and agglomeration reduced. The analysis of 26 replicates of polystyrene (PS) liquid samples through four distinct dot plots highlighted the superior accuracy of dot plots integrating yellow fluorescence. Through systematic staining of varying NR concentrations across three microplastic liquid samples (polyethylene terephthalate, polyethylene, and polypropylene), the optimal staining concentration was determined to be 15-20 μg/mL. The distributions of agglomerated NR and NR stained PS under two scenarios-dissolved NR and partially agglomerated NR-were compared. Results showed their distinct distributions within the side scatter versus yellow fluorescence dot plot. Counting results from gradient-diluted PS liquid samples revealed a microplastic detection lower limit of 10 particles/mL, with an optimal concentration range of 10-10 particles/mL. Flow cytometric assessment of PS microspheres spanning 150 nm to 40 μm indicated a 150 nm particle size detection minimum. Our investigation validated the efficacy of NR staining and subsequent flow cytometry analysis across eleven types of microplastics. Separation and concentration of microplastics (1.0-50.0 μm) and nanoplastics (0.2-1.0 μm) were achieved via sequential sieving through 50, 1.0, and 0.2 μm filter membranes. We used a combination of multiple filtration steps and flow cytometry to analyze microplastics and nanoplastics in nine simulated water samples. Our results showed that the combined amount of microplastics (1.0-50.0 μm) and nanoplastics (0.2-1.0 μm) after filtration had a ratio of 0.80-1.19 compared to the total microplastic concentration before filtration. This result confirms the practicality of our approach. By enhancing flow cytometry-based microplastic and nanoplastic detection protocols, our study provides pivotal technical support for research concerning quantitative toxicity assessment of microplastic and nanoplastic pollution.
近年来,流式细胞术在定量微塑料分析中的应用日益突出。然而,目前的方法存在一些需要改进的缺点。本研究旨在改进尼罗红(NR)染色微塑料的流式细胞术检测方案,以促进对微塑料和纳米塑料的清晰计数。通过将溶液中二甲基亚砜(DMSO)的浓度提高到20%-30%,NR的溶解度提高,团聚减少。通过四个不同的点图对26个聚苯乙烯(PS)液体样品重复进行分析,突出了整合黄色荧光的点图具有更高的准确性。通过对三种微塑料液体样品(聚对苯二甲酸乙二酯、聚乙烯和聚丙烯)中不同NR浓度进行系统染色,确定最佳染色浓度为15-20μg/mL。比较了溶解的NR和部分团聚的NR两种情况下团聚的NR和NR染色的PS的分布。结果显示它们在侧向散射与黄色荧光点图中的分布明显不同。对梯度稀释的PS液体样品的计数结果显示,微塑料的检测下限为10个颗粒/mL,最佳浓度范围为10-10个颗粒/mL。对粒径范围为150nm至40μm的PS微球进行流式细胞术评估,结果表明最小可检测粒径为150nm。我们的研究验证了NR染色及后续流式细胞术分析对11种微塑料的有效性。通过依次用50、1.0和0.2μm的滤膜筛分,实现了微塑料(1.0-50.0μm)和纳米塑料(0.2-1.0μm)的分离和浓缩。我们使用多种过滤步骤和流式细胞术相结合的方法,对9个模拟水样中的微塑料和纳米塑料进行分析。我们的结果表明,过滤后微塑料(1.0-50.0μm)和纳米塑料(0.2-1.0μm)的总量与过滤前微塑料总浓度的比值为0.80-1.19。这一结果证实了我们方法的实用性。通过改进基于流式细胞术的微塑料和纳米塑料检测方案,我们的研究为微塑料和纳米塑料污染定量毒性评估研究提供了关键技术支持。