Suppr超能文献

用于食谱营养评估的精致网络。

DelicacyNet for nutritional evaluation of recipes.

作者信息

Li Ruijie, Ji Peihan, Kong Qing

机构信息

College of Computer Science and Technology, Faculty of Information Science and Engineering, Ocean University of China, Qingdao, Shandong, China.

Haide College, Ocean University of China, Qingdao, Shandong, China.

出版信息

Front Nutr. 2023 Sep 14;10:1247631. doi: 10.3389/fnut.2023.1247631. eCollection 2023.

Abstract

In this paper, we are interested in how computers can be used to better serve us humans, such as helping humans control their nutrient intake, with higher level shortcuts. Specifically, the neural network model was used to help humans identify and analyze the content and proportion of nutrients in daily food intake, so as to help humans autonomously choose and reasonably match diets. In this study, we formed the program we wanted to obtain by establishing four modules, in which the imagination module sampled the environment, then relied on the encoder to extract the implicit features of the image, and finally relied on the decoder to obtain the required feature vector from the implicit features, and converted it into the battalion formation table information through the semantic output module. Finally, the model achieved extremely high accuracy on recipe1M+ and food2K datasets.

摘要

在本文中,我们关注的是计算机如何能够被用于更好地服务人类,比如通过更高级别的捷径帮助人类控制营养摄入。具体而言,神经网络模型被用于帮助人类识别和分析日常食物摄入中营养成分的含量和比例,从而帮助人类自主选择并合理搭配饮食。在本研究中,我们通过建立四个模块来形成我们想要获得的程序,其中想象模块对环境进行采样,然后依靠编码器提取图像的隐含特征,最后依靠解码器从隐含特征中获得所需的特征向量,并通过语义输出模块将其转换为营队编队表信息。最后,该模型在recipe1M+和food2K数据集上取得了极高的准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09f7/10537284/9e55103b4db8/fnut-10-1247631-g001.jpg

相似文献

1
DelicacyNet for nutritional evaluation of recipes.
Front Nutr. 2023 Sep 14;10:1247631. doi: 10.3389/fnut.2023.1247631. eCollection 2023.
2
TLTNet: A novel transscale cascade layered transformer network for enhanced retinal blood vessel segmentation.
Comput Biol Med. 2024 Aug;178:108773. doi: 10.1016/j.compbiomed.2024.108773. Epub 2024 Jun 25.
3
Recipe1M+: A Dataset for Learning Cross-Modal Embeddings for Cooking Recipes and Food Images.
IEEE Trans Pattern Anal Mach Intell. 2019 Jul 9. doi: 10.1109/TPAMI.2019.2927476.
4
D-SAT: dual semantic aggregation transformer with dual attention for medical image segmentation.
Phys Med Biol. 2023 Dec 22;69(1). doi: 10.1088/1361-6560/acf2e5.
5
Feature-guided attention network for medical image segmentation.
Med Phys. 2023 Aug;50(8):4871-4886. doi: 10.1002/mp.16253. Epub 2023 Feb 16.
6
Dual-TranSpeckle: Dual-pathway transformer based encoder-decoder network for medical ultrasound image despeckling.
Comput Biol Med. 2024 May;173:108313. doi: 10.1016/j.compbiomed.2024.108313. Epub 2024 Mar 21.
7
HCTNet: A hybrid CNN-transformer network for breast ultrasound image segmentation.
Comput Biol Med. 2023 Mar;155:106629. doi: 10.1016/j.compbiomed.2023.106629. Epub 2023 Feb 9.
8
MS-TCNet: An effective Transformer-CNN combined network using multi-scale feature learning for 3D medical image segmentation.
Comput Biol Med. 2024 Mar;170:108057. doi: 10.1016/j.compbiomed.2024.108057. Epub 2024 Jan 28.
9
MR-Trans: MultiResolution Transformer for medical image segmentation.
Comput Biol Med. 2023 Oct;165:107456. doi: 10.1016/j.compbiomed.2023.107456. Epub 2023 Sep 9.
10
Large Scale Visual Food Recognition.
IEEE Trans Pattern Anal Mach Intell. 2023 Aug;45(8):9932-9949. doi: 10.1109/TPAMI.2023.3237871. Epub 2023 Jun 30.

本文引用的文献

1
Large Scale Visual Food Recognition.
IEEE Trans Pattern Anal Mach Intell. 2023 Aug;45(8):9932-9949. doi: 10.1109/TPAMI.2023.3237871. Epub 2023 Jun 30.
3
Learning Feature Recovery Transformer for Occluded Person Re-Identification.
IEEE Trans Image Process. 2022;31:4651-4662. doi: 10.1109/TIP.2022.3186759. Epub 2022 Jul 12.
4
Content-Noise Complementary Learning for Medical Image Denoising.
IEEE Trans Med Imaging. 2022 Feb;41(2):407-419. doi: 10.1109/TMI.2021.3113365. Epub 2022 Feb 2.
5
Browning and pigmentation in food through the Maillard reaction.
Glycoconj J. 2021 Jun;38(3):283-292. doi: 10.1007/s10719-020-09943-x. Epub 2020 Sep 10.
6
New Nutrient Rich Food Nutrient Density Models That Include Nutrients and MyPlate Food Groups.
Front Nutr. 2020 Jul 21;7:107. doi: 10.3389/fnut.2020.00107. eCollection 2020.
7
CNN-MHSA: A Convolutional Neural Network and multi-head self-attention combined approach for detecting phishing websites.
Neural Netw. 2020 May;125:303-312. doi: 10.1016/j.neunet.2020.02.013. Epub 2020 Feb 29.
8
An Artificial Intelligence-Based System for Nutrient Intake Assessment of Hospitalised Patients.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:5696-5699. doi: 10.1109/EMBC.2019.8856889.
9
Recipe1M+: A Dataset for Learning Cross-Modal Embeddings for Cooking Recipes and Food Images.
IEEE Trans Pattern Anal Mach Intell. 2019 Jul 9. doi: 10.1109/TPAMI.2019.2927476.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验