Suppr超能文献

CNN-MHSA:一种用于检测钓鱼网站的卷积神经网络和多头自注意力相结合的方法。

CNN-MHSA: A Convolutional Neural Network and multi-head self-attention combined approach for detecting phishing websites.

机构信息

Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Peng Cheng Laboratory, Shenzhen 518055, China.

Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.

出版信息

Neural Netw. 2020 May;125:303-312. doi: 10.1016/j.neunet.2020.02.013. Epub 2020 Feb 29.

Abstract

Increasing phishing sites today have posed great threats due to their terribly imperceptible hazard. They expect users to mistake them as legitimate ones so as to steal user information and properties without notice. The conventional way to mitigate such threats is to set up blacklists. However, it cannot detect one-time Uniform Resource Locators (URL) that have not appeared in the list. As an improvement, deep learning methods are applied to increase detection accuracy and reduce the misjudgment ratio. However, some of them only focus on the characters in URLs but ignore the relationships between characters, which results in that the detection accuracy still needs to be improved. Considering the multi-head self-attention (MHSA) can learn the inner structures of URLs, in this paper, we propose CNN-MHSA, a Convolutional Neural Network (CNN) and the MHSA combined approach for highly-precise. To achieve this goal, CNN-MHSA first takes a URL string as the input data and feeds it into a mature CNN model so as to extract its features. In the meanwhile, MHSA is applied to exploit characters' relationships in the URL so as to calculate the corresponding weights for the CNN learned features. Finally, CNN-MHSA can produce highly-precise detection result for a URL object by integrating its features and their weights. The thorough experiments on a dataset collected in real environment demonstrate that our method achieves 99.84% accuracy, which outperforms the classical method CNN-LSTM and at least 6.25% higher than other similar methods on average.

摘要

如今,越来越多的钓鱼网站因其难以察觉的巨大威胁而出现。它们希望用户将它们误认为是合法网站,以便在不知不觉中窃取用户的信息和财产。传统的缓解此类威胁的方法是设置黑名单。但是,它无法检测到尚未出现在列表中的一次性统一资源定位符 (URL)。作为一种改进,深度学习方法被应用于提高检测准确性并降低误判率。然而,其中一些方法仅关注 URL 中的字符,而忽略了字符之间的关系,这导致检测准确性仍有待提高。考虑到多头自注意力 (MHSA) 可以学习 URL 的内部结构,在本文中,我们提出了 CNN-MHSA,这是一种卷积神经网络 (CNN) 和 MHSA 相结合的方法,可实现高精度。为了实现这一目标,CNN-MHSA 首先将 URL 字符串作为输入数据,并将其输入到成熟的 CNN 模型中,以提取其特征。同时,MHSA 用于利用 URL 中的字符关系,以便为 CNN 学习的特征计算相应的权重。最后,CNN-MHSA 通过整合其特征及其权重,可以为 URL 对象生成高精度的检测结果。在真实环境中收集的数据集上进行的彻底实验表明,我们的方法达到了 99.84%的准确率,优于经典方法 CNN-LSTM,平均比其他类似方法至少高出 6.25%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验