Suppr超能文献

评估老年人参与基于电话的社交联系干预措施的预测因素:一种双机器学习和回归方法。

Evaluating Predictors of Participation in Telephone-Based Social-Connectedness Interventions for Older Adults: A Dual Machine-Learning and Regression Approach.

作者信息

Chae Minji, Chavez Arlette, Singh Maya, Holbrook Jordan, Glasheen William P, Woodard LeChauncy, Adepoju Omolola E

机构信息

Humana Integrated Health Systems Sciences Institute, Houston, TX, USA.

Humana Inc., Louisville, KY, USA.

出版信息

Gerontol Geriatr Med. 2023 Sep 28;9:23337214231201204. doi: 10.1177/23337214231201204. eCollection 2023 Jan-Dec.

Abstract

Social isolation is a well-documented contributor to poor mental and physical health, and interventions promoting social connectedness have been associated with various health benefits. This study examined predictors of participation in a telephone-based social connectedness intervention for socially isolated older adults. Data were obtained from a social-connectedness intervention that paired college students with Houston-area, community-dwelling adults aged 65 years and older and enrolled in Medicare Advantage plans. We combined machine learning and regression techniques to identify significant predictors of program participation. The following machine-learning methods were implemented: (1) -nearest neighbors, (2) decision tree and ensembles of decision trees, (3) gradient-boosted decision tree, and (4) random forest. The primary outcome was a binary flag indicating participation in the telephone-based social-connectedness intervention. The most predictive variables in the ML models, with scores corresponding to the 90th percentile or greater, were included in the regression analysis. The predictive ability of each model showed high discriminative power, with test accuracies greater than 95%. Our findings suggest that telephone-based social-connectedness interventions appeal to individuals with disabilities, depression, arthritis, and higher risk scores. scores. Recognizing features that predict participation in social-connectedness programs is the first step to increasing reach and fostering patient engagement.

摘要

社会隔离是导致身心健康不佳的一个有充分记录的因素,而促进社会联系的干预措施已被证明与各种健康益处相关。本研究调查了参与针对社会隔离的老年人的电话社交联系干预措施的预测因素。数据来自一项社交联系干预项目,该项目将大学生与休斯顿地区65岁及以上、参加医疗保险优势计划的社区居住成年人配对。我们结合机器学习和回归技术来确定项目参与的重要预测因素。实施了以下机器学习方法:(1) k近邻算法;(2) 决策树及决策树集成;(3) 梯度提升决策树;(4) 随机森林算法。主要结果是一个二元标志,表明是否参与基于电话的社交联系干预。机器学习模型中预测性最强的变量(得分对应第90百分位数或更高)被纳入回归分析。每个模型的预测能力都显示出较高的判别力,测试准确率超过95%。我们的研究结果表明,基于电话的社交联系干预措施对残疾、抑郁、患有关节炎以及风险评分较高的个体具有吸引力。识别预测参与社交联系项目的特征是扩大覆盖面和促进患者参与的第一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d3e/10540577/490ff143a083/10.1177_23337214231201204-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验