Wang Yuhling, Tsytsarev Vassiliy, Liao Lun-De
Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, HSF-2, Baltimore, Maryland 21201, USA.
Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Rd., Zhunan Township, Miaoli County 350, Taiwan.
APL Bioeng. 2023 Sep 28;7(3):036119. doi: 10.1063/5.0158791. eCollection 2023 Sep.
Clinical and preclinical studies on epileptic seizures are closely linked to the study of neurovascular coupling. Obtaining reliable information about cerebral blood flow (CBF) in the area of epileptic activity through minimally invasive techniques is crucial for research in this field. In our studies, we used laser speckle contrast imaging (LSCI) to gather information about the local blood circulation in the area of epileptic activity. We used two models of epileptic seizures: one based on 4-aminopyridine (4-AP) and another based on pentylenetetrazole (PTZ). We verified the duration of an epileptic seizure using electrocorticography (ECoG). We applied the antiepileptic drug topiramate (TPM) to both models, but its effect was different in each case. However, in both models, TPM had an effect on neurovascular coupling in the area of epileptic activity, as shown by both LSCI and ECoG data. We demonstrated that TPM significantly reduced the amplitude of 4-AP-induced epileptic seizures (4-AP+TPM: 0.61 ± 0.13 mV vs 4-AP: 1.08 ± 0.19 mV; < 0.05), and it also reduced gamma power in ECoG in PTZ-induced epileptic seizures (PTZ+TPM: 38.5% ± 11.9% of the peak value vs PTZ: 59.2% ± 3.0% of peak value; < 0.05). We also captured the pattern of CBF changes during focal epileptic seizures induced by 4-AP. Our data confirm that the system of simultaneous cortical LSCI and registration of ECoG makes it possible to evaluate the effectiveness of pharmacological agents in various types of epileptic seizures in models and provides spatial and temporal information on the process of ictogenesis.
癫痫发作的临床和临床前研究与神经血管耦合的研究密切相关。通过微创技术获取癫痫活动区域脑血流量(CBF)的可靠信息对于该领域的研究至关重要。在我们的研究中,我们使用激光散斑对比成像(LSCI)来收集癫痫活动区域局部血液循环的信息。我们使用了两种癫痫发作模型:一种基于4-氨基吡啶(4-AP),另一种基于戊四氮(PTZ)。我们使用皮层脑电图(ECoG)来验证癫痫发作的持续时间。我们将抗癫痫药物托吡酯(TPM)应用于两种模型,但在每种情况下其效果都有所不同。然而,在两种模型中,如LSCI和ECoG数据所示,TPM对癫痫活动区域的神经血管耦合都有影响。我们证明TPM显著降低了4-AP诱导的癫痫发作幅度(4-AP+TPM:0.61±0.13 mV vs 4-AP:1.08±0.19 mV;P<0.05),并且在PTZ诱导的癫痫发作中它还降低了ECoG中的γ功率(PTZ+TPM:峰值的38.5%±11.9% vs PTZ:峰值的59.2%±3.0%;P<0.05)。我们还捕捉了4-AP诱导的局灶性癫痫发作期间CBF变化的模式。我们的数据证实,同时进行皮层LSCI和ECoG记录的系统能够评估模型中各种类型癫痫发作中药理剂的有效性,并提供癫痫发作发生过程的时空信息。