Suppr超能文献

双功能电解质添加剂构建富LiF电极-电解质界面实现高性能Li/LiNiCoMnO电池

LiF-Rich Electrode-Electrolyte Interfaces Enabled by Bifunctional Electrolyte Additive to Achieve High-Performance Li/LiNiCoMnO Batteries.

作者信息

Lei Yue, Xu Xin, Yin Junying, Xu Jianping, Xi Kang, Wei Lai, Wu Haihua, Jiang Sen, Gao Yunfang

机构信息

College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.

College of Chemical Engineering and Safety, Binzhou University, Binzhou, Shandong 256603, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2023 Oct 11;15(40):46941-46951. doi: 10.1021/acsami.3c09641. Epub 2023 Oct 2.

Abstract

Commercial Li-ion batteries use LiPF-based carbonate electrolytes extensively, but there are many challenges associated with them, like dendritic Li growth and electrolyte decomposition, while supporting the aggressive chemical and electrochemical reactivity of lithium metal batteries (LMBs). This work proposes 1,1,1,3,3,3-hexafluoroisopropyl methacrylate (HFM) as a multifunctional electrolyte additive, constructing protective solid-/cathode-electrolyte interphases (SEI/CEI) on the surfaces for both lithium metal anode (LMA) and Ni-rich cathode to solve these challenges simultaneously. The highly fluorinated group (-CF) of the HFM molecule contributes to the construction of SEI/CEI films rich in LiF that offer excellent electronic insulation, high mechanical strength, and surface energy. Accordingly, the HFM-derived LiF-rich interphases can minimize the electrolyte-electrode parasitic reactions and promote uniform Li deposition. Also, the problems of LiNiCoMnO particles' inner microcrack evolution and the growth of dendritic Li are adequately addressed. Consequently, the HFM additive enables a Li/LiNiCoMnO cell with higher capacity retention after 200 cycles at 1 C than the cell with no additive (74.7 vs 52.8%), as well as a better rate performance, especially at 9 C. Furthermore, at 0.5/0.5 mAh cm, the Li/Li symmetrical battery displays supersteadfast cyclic performance beyond 500 h when HFM is present. For high-performance LMBs, the HFM additive offers a straightforward, cost-effective route.

摘要

商用锂离子电池广泛使用基于LiPF的碳酸盐电解质,但与之相关存在许多挑战,如锂枝晶生长和电解质分解,同时还要应对锂金属电池(LMB)具有的强烈化学和电化学反应活性。这项工作提出将甲基丙烯酸1,1,1,3,3,3-六氟异丙酯(HFM)作为一种多功能电解质添加剂,在锂金属负极(LMA)和富镍正极的表面构建保护性固态/阴极-电解质界面(SEI/CEI),以同时解决这些挑战。HFM分子中高度氟化的基团(-CF)有助于构建富含LiF的SEI/CEI膜,这些膜具有优异的电子绝缘性、高机械强度和表面能。因此,由HFM衍生的富含LiF的界面可以最大限度地减少电解质-电极寄生反应,并促进锂的均匀沉积。此外,LiNiCoMnO颗粒内部微裂纹演变和锂枝晶生长的问题也得到了充分解决。因此,与未添加添加剂的电池相比,HFM添加剂使Li/LiNiCoMnO电池在1 C下循环200次后具有更高的容量保持率(74.7%对52.8%),以及更好的倍率性能,尤其是在9 C时。此外,在0.5/0.5 mAh cm下,当存在HFM时,Li/Li对称电池在超过500 h的时间内显示出超稳定的循环性能。对于高性能LMBs,HFM添加剂提供了一条直接、经济高效的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验