Suppr超能文献

预组织的内电场促进腺嘌呤 DNA 糖基化酶的腺嘌呤切除反应的双取代机制。

Preorganized Internal Electric Field Promotes a Double-Displacement Mechanism for the Adenine Excision Reaction by Adenine DNA Glycosylase.

机构信息

Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China.

Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.

出版信息

J Phys Chem B. 2023 Oct 12;127(40):8551-8564. doi: 10.1021/acs.jpcb.3c04928. Epub 2023 Oct 2.

Abstract

Adenine DNA glycosylase (MutY) is a monofunctional glycosylase, removing adenines (A) misinserted opposite 8-oxo-7,8-dihydroguanine (OG), a common product of oxidative damage to DNA. Through multiscale calculations, we decipher a detailed adenine excision mechanism of MutY that is consistent with all available experimental data, involving an initial protonation step and two nucleophilic displacement steps. During the first displacement step, N-glycosidic bond cleavage is accompanied by the attack of the carboxylate group of residue Asp144 at the anomeric carbon (C1'), forming a covalent glycosyl-enzyme intermediate to stabilize the fleeting oxocarbenium ion. After departure of the excised base, water nucleophiles can be recruited to displace Asp144, completing the catalytic cycle with retention of stereochemistry at the C1' position. The two displacement reactions are found to mostly involve the movement of the oxocarbenium ion, occurring with large charge reorganization and thus sensitive to the internal electric field (IEF) exerted by the polar protein environment. Intriguingly, we find that the negatively charged carboxylate group is a good nucleophile for the oxocarbenium ion, yet an unactivated water molecule is not, and that the electric field catalysis strategy is used by the enzyme to enable its unique double-displacement reaction mechanism. A strong IEF, pointing toward 5' direction of the substrate sugar ring, greatly facilitates the second displacement reaction at the expense of elevating the barrier of the first one, thereby allowing both reactions to occur. These findings not only increase our understanding of the strategies used by DNA glycosylases to repair DNA lesions, but also have important implications for how internal/external electric field can be applied to modulate chemical reactions.

摘要

腺嘌呤 DNA 糖基化酶(MutY)是一种单功能糖苷酶,可去除在氧化损伤 DNA 常见产物 8-氧代-7,8-二氢鸟嘌呤(OG)错配的腺嘌呤(A)。通过多尺度计算,我们解析了 MutY 详细的腺嘌呤切除机制,该机制与所有现有实验数据一致,涉及初始质子化步骤和两个亲核取代步骤。在第一个取代步骤中,N-糖苷键断裂伴随着残基 Asp144 的羧基在糖苷碳原子(C1')上的进攻,形成共价糖基-酶中间体以稳定短暂的氧碳正离子。在切除碱基离开后,亲核水分子可以被招募取代 Asp144,在保留 C1'位置立体化学的情况下完成催化循环。发现这两个取代反应主要涉及氧碳正离子的移动,其涉及大量的电荷重排,因此对极性蛋白质环境施加的内电场(IEF)敏感。有趣的是,我们发现带负电荷的羧基是氧碳正离子的良好亲核试剂,但非活化水分子不是,并且酶使用电场催化策略来实现其独特的双取代反应机制。强 IEF 指向底物糖环的 5'方向,极大地促进了第二个取代反应,同时提高了第一个取代反应的势垒,从而允许两个反应发生。这些发现不仅增加了我们对 DNA 糖苷酶修复 DNA 损伤所使用策略的理解,而且对内部/外部电场如何应用于调节化学反应具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验