Suppr超能文献

相似文献

2
De novo NAD biosynthetic impairment in acute kidney injury in humans.
Nat Med. 2018 Sep;24(9):1351-1359. doi: 10.1038/s41591-018-0138-z. Epub 2018 Aug 20.
3
Cell stress response impairs de novo NAD+ biosynthesis in the kidney.
JCI Insight. 2022 Jan 11;7(1):e153019. doi: 10.1172/jci.insight.153019.
4
PPARγ-Coactivator-1α, Nicotinamide Adenine Dinucleotide and Renal Stress Resistance.
Nephron. 2017;137(4):253-255. doi: 10.1159/000471895. Epub 2017 Jun 8.
5
PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection.
Nature. 2016 Mar 24;531(7595):528-32. doi: 10.1038/nature17184. Epub 2016 Mar 16.
7
The endogenous tryptophan metabolite and NAD+ precursor quinolinic acid confers resistance of gliomas to oxidative stress.
Cancer Res. 2013 Jun 1;73(11):3225-34. doi: 10.1158/0008-5472.CAN-12-3831. Epub 2013 Apr 2.
8
Extracellular signal-regulated kinase 1/2 regulates NAD metabolism during acute kidney injury through microRNA-34a-mediated NAMPT expression.
Cell Mol Life Sci. 2020 Sep;77(18):3643-3655. doi: 10.1007/s00018-019-03391-z. Epub 2019 Dec 23.
9
PGC1α regulates ACMSD expression through cooperation with HNF4α.
Amino Acids. 2018 Dec;50(12):1769-1773. doi: 10.1007/s00726-018-2652-1. Epub 2018 Sep 19.
10
TFEB-driven lysosomal biogenesis is pivotal for PGC1α-dependent renal stress resistance.
JCI Insight. 2019 Mar 14;5(8):126749. doi: 10.1172/jci.insight.126749.

引用本文的文献

3
Quinolinic acid potentially links kidney injury to brain toxicity.
JCI Insight. 2025 Feb 13;10(6):e180229. doi: 10.1172/jci.insight.180229.
4
NAD metabolism in acute kidney injury and chronic kidney disease transition.
Trends Mol Med. 2025 Jul;31(7):669-681. doi: 10.1016/j.molmed.2024.12.004. Epub 2025 Jan 4.
5
A Metabolomics Approach to Identify Metabolites Associated With Mortality in Patients Receiving Maintenance Hemodialysis.
Kidney Int Rep. 2024 Jun 29;9(9):2718-2726. doi: 10.1016/j.ekir.2024.06.039. eCollection 2024 Sep.

本文引用的文献

1
NAD+ Biosynthesis Impairment and Acute Kidney Injury after Major Vascular Surgery.
Antioxidants (Basel). 2023 Mar 28;12(4):821. doi: 10.3390/antiox12040821.
2
NAD precursor supplementation prevents mtRNA/RIG-I-dependent inflammation during kidney injury.
Nat Metab. 2023 Mar;5(3):414-430. doi: 10.1038/s42255-023-00761-7. Epub 2023 Mar 13.
3
Incidence of Acute Kidney Injury in Hospitalized Children: A Meta-analysis.
Pediatrics. 2023 Feb 1;151(2). doi: 10.1542/peds.2022-058823.
4
States of quinolinic acid excess in urine: A systematic review of human studies.
Front Nutr. 2022 Dec 16;9:1070435. doi: 10.3389/fnut.2022.1070435. eCollection 2022.
5
The Significance of NAD+ Biosynthesis Alterations in Acute Kidney Injury.
Semin Nephrol. 2022 May;42(3):151287. doi: 10.1016/j.semnephrol.2022.10.013. Epub 2022 Nov 18.
6
7
Niacinamide May Be Associated with Improved Outcomes in COVID-19-Related Acute Kidney Injury: An Observational Study.
Kidney360. 2020 Nov 20;2(1):33-41. doi: 10.34067/KID.0006452020. eCollection 2021 Jan 28.
8
Multi-omic approaches to acute kidney injury and repair.
Curr Opin Biomed Eng. 2021 Dec;20. doi: 10.1016/j.cobme.2021.100344. Epub 2021 Sep 21.
9
Spatially Resolved Transcriptomic Analysis of Acute Kidney Injury in a Female Murine Model.
J Am Soc Nephrol. 2022 Feb;33(2):279-289. doi: 10.1681/ASN.2021081150. Epub 2021 Dec 1.
10
Cell stress response impairs de novo NAD+ biosynthesis in the kidney.
JCI Insight. 2022 Jan 11;7(1):e153019. doi: 10.1172/jci.insight.153019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验