Suppr超能文献

一种用于强迫症异常振荡和深部脑刺激控制的计算网络动力学建模。

A computational network dynamical modeling for abnormal oscillation and deep brain stimulation control of obsessive-compulsive disorder.

作者信息

Yin Lining, Han Fang, Yu Ying, Wang Qingyun

机构信息

Department of Dynamics and Control, Beihang University, Beijing, 100191 China.

College of Information Science and Technology, Donghua University, Shanghai, 201620 China.

出版信息

Cogn Neurodyn. 2023 Oct;17(5):1167-1184. doi: 10.1007/s11571-022-09858-3. Epub 2022 Aug 24.

Abstract

Obsessive-compulsive disorder (OCD) is associated with multi-nodal abnormalities in brain networks, characterized by recurrent intrusive thoughts (obsessions) and repetitive behaviours or mental acts (compulsions), which might manifest as pathological low-frequency oscillations in the frontal EEG and low-frequency bursting firing patterns in the subthalamus nucleus (STN). Abnormalities in the cortical-striatal-thalamic-cortical (CSTC) loop, including dysregulation of serotonin, dopamine, and glutamate systems, are considered to contribute to certain types of OCD. Here, we extend a biophysical computational model to investigate the effect of orbitofronto-subcortical loop abnormalities on network oscillations. Particularly, the OCD lesion process is simulated by the loss of connectivity from striatal parvalbumin interneurons (PV) to medium spiny neurons (MSNs), excessive activation to the hyperdirect pathway, and high dopamine concentrations. By calculating low-frequency oscillation power in the STN, STN burst index, and average firing rates levels of the cortex and thalamus, we demonstrate that the model can explain the pathology of glutamatergic and dopamine system dysregulation, the effects of pathway imbalance, and neuropsychiatric treatment in OCD. In addition, results indicate the abnormal brain rhythms caused by the dysregulation of orbitofronto-subcortical loop may serve as a biomarker of OCD. Our studies can help to understand the cause of OCD, thereby facilitating the diagnosis of OCD and the development of new therapeutics.

摘要

强迫症(OCD)与脑网络中的多节点异常有关,其特征为反复出现的侵入性思维(强迫观念)和重复性的行为或心理活动(强迫行为),这可能表现为额叶脑电图中的病理性低频振荡以及丘脑底核(STN)中的低频爆发式放电模式。皮质-纹状体-丘脑-皮质(CSTC)环路的异常,包括血清素、多巴胺和谷氨酸系统的失调,被认为是导致某些类型强迫症的原因。在此,我们扩展了一个生物物理计算模型,以研究眶额皮质-皮质下环路异常对网络振荡的影响。具体而言,通过模拟纹状体小白蛋白中间神经元(PV)与中型多棘神经元(MSN)之间连接性的丧失、对超直接通路的过度激活以及高多巴胺浓度来模拟强迫症的病变过程。通过计算STN中的低频振荡功率、STN爆发指数以及皮质和丘脑的平均放电率水平,我们证明该模型可以解释谷氨酸能和多巴胺系统失调的病理、通路失衡的影响以及强迫症中的神经精神治疗。此外,结果表明眶额皮质-皮质下环路失调引起的异常脑节律可能是强迫症的一个生物标志物。我们的研究有助于理解强迫症的病因,从而促进强迫症的诊断和新疗法的开发。

相似文献

1
A computational network dynamical modeling for abnormal oscillation and deep brain stimulation control of obsessive-compulsive disorder.
Cogn Neurodyn. 2023 Oct;17(5):1167-1184. doi: 10.1007/s11571-022-09858-3. Epub 2022 Aug 24.
2
Mechanisms of deep brain stimulation for obsessive compulsive disorder: effects upon cells and circuits.
Front Integr Neurosci. 2012 Jun 14;6:29. doi: 10.3389/fnint.2012.00029. eCollection 2012.
3
4
Altered Cortico-Striatal Functional Connectivity During Resting State in Obsessive-Compulsive Disorder.
Front Psychiatry. 2019 May 10;10:319. doi: 10.3389/fpsyt.2019.00319. eCollection 2019.
6
Deep Brain Stimulation for Refractory Obsessive-Compulsive Disorder: Towards an Individualized Approach.
Front Psychiatry. 2019 Dec 13;10:905. doi: 10.3389/fpsyt.2019.00905. eCollection 2019.
8
Decreased limbic and increased fronto-parietal connectivity in unmedicated patients with obsessive-compulsive disorder.
Hum Brain Mapp. 2014 Nov;35(11):5617-32. doi: 10.1002/hbm.22574. Epub 2014 Jul 12.

引用本文的文献

1
Therapeutic effects of striatal dopaminergic modulation on idiopathic dystonia and OCD in humans: insights from the striosome hypothesis.
Front Hum Neurosci. 2025 Aug 20;19:1621054. doi: 10.3389/fnhum.2025.1621054. eCollection 2025.
3
Break-up and recovery of harmony between direct and indirect pathways in the basal ganglia: Huntington's disease and treatment.
Cogn Neurodyn. 2024 Oct;18(5):2909-2924. doi: 10.1007/s11571-024-10125-w. Epub 2024 May 30.
4
Spike-spindle coupling during sleep and its mechanism explanation in childhood focal epilepsy.
Cogn Neurodyn. 2024 Oct;18(5):2145-2160. doi: 10.1007/s11571-023-10052-2. Epub 2024 Jan 4.
5
Quantifying harmony between direct and indirect pathways in the basal ganglia: healthy and Parkinsonian states.
Cogn Neurodyn. 2024 Oct;18(5):2809-2829. doi: 10.1007/s11571-024-10119-8. Epub 2024 May 16.
6
Preface for special issue on nonlinear dynamics modeling and control for brain science and brain-like intelligence.
Cogn Neurodyn. 2023 Oct;17(5):1117-1118. doi: 10.1007/s11571-023-09959-7. Epub 2023 Apr 18.

本文引用的文献

1
Functional analysis of distinct populations of subthalamic nucleus neurons on Parkinson's disease and OCD-like behaviors in mice.
Mol Psychiatry. 2021 Nov;26(11):7029-7046. doi: 10.1038/s41380-021-01162-6. Epub 2021 Jun 7.
3
Oscillatory activity in the BNST/ALIC and the frontal cortex in OCD: acute effects of DBS.
J Neural Transm (Vienna). 2021 Feb;128(2):215-224. doi: 10.1007/s00702-020-02297-6. Epub 2021 Feb 3.
4
Parkinsonism Alters Beta Burst Dynamics across the Basal Ganglia-Motor Cortical Network.
J Neurosci. 2021 Mar 10;41(10):2274-2286. doi: 10.1523/JNEUROSCI.1591-20.2021. Epub 2021 Jan 22.
5
Nucleus Accumbens Fast-Spiking Interneurons Constrain Impulsive Action.
Biol Psychiatry. 2019 Dec 1;86(11):836-847. doi: 10.1016/j.biopsych.2019.07.002. Epub 2019 Jul 10.
8
Long-Lasting Electrophysiological After-Effects of High-Frequency Stimulation in the Globus Pallidus: Human and Rodent Slice Studies.
J Neurosci. 2018 Dec 12;38(50):10734-10746. doi: 10.1523/JNEUROSCI.0785-18.2018. Epub 2018 Oct 29.
9
Subthalamic theta activity: a novel human subcortical biomarker for obsessive compulsive disorder.
Transl Psychiatry. 2018 Jun 18;8(1):118. doi: 10.1038/s41398-018-0165-z.
10
Progress and challenges in deep brain stimulation for obsessive-compulsive disorder.
Pharmacol Ther. 2018 Jun;186:168-175. doi: 10.1016/j.pharmthera.2018.01.011. Epub 2018 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验