Department of Neuroscience, University of Minnesota Twin Cities, Minneapolis, Minnesota.
Graduate Program in Neuroscience and Medical Scientist Training Program, University of Minnesota Twin Cities, Minneapolis, Minnesota.
Biol Psychiatry. 2019 Dec 1;86(11):836-847. doi: 10.1016/j.biopsych.2019.07.002. Epub 2019 Jul 10.
The nucleus accumbens (NAc) controls multiple facets of impulsivity but is a heterogeneous brain region with diverse microcircuitry. Prior literature links impulsive behavior in rodents to gamma-aminobutyric acid signaling in the NAc. Here, we studied the regulation of impulsive behavior by fast-spiking interneurons (FSIs), a strong source of gamma-aminobutyric acid-mediated synaptic inhibition in the NAc.
Male and female transgenic mice expressing Cre recombinase in FSIs allowed us to identify these sparsely distributed cells in the NAc. We used a 5-choice serial reaction time task to measure both impulsive action and sustained attention. During the 5-choice serial reaction time task, we monitored FSI activity with fiber photometry calcium imaging and manipulated FSI activity with chemogenetic and optogenetic methodology. We used electrophysiology, optogenetics, and fluorescent in situ hybridization to confirm these methods were robust and specific to FSIs.
In mice performing the 5-choice serial reaction time task, NAc FSIs showed sustained activity on trials ending with correct responses, but FSI activity declined over time on trials ending with premature responses. The number of premature responses increased significantly after sustained chemogenetic inhibition or temporally delimited optogenetic inhibition of NAc FSIs, without any changes in response latencies or general locomotor activity.
These experiments provide strong evidence that NAc FSIs constrain impulsive actions, most likely through gamma-aminobutyric acid-mediated synaptic inhibition of medium spiny projection neurons. Our findings may provide insight into the pathophysiology of disorders associated with impulsivity and may inform the development of circuit-based therapeutic interventions.
伏隔核(NAc)控制着冲动行为的多个方面,但它是一个具有不同微电路的异质脑区。先前的文献将啮齿动物的冲动行为与 NAc 中的γ-氨基丁酸信号联系起来。在这里,我们研究了快速放电中间神经元(FSIs)对冲动行为的调节作用,FSIs 是 NAc 中 GABA 介导的突触抑制的一个强大来源。
雄性和雌性在 FSIs 中表达 Cre 重组酶的转基因小鼠使我们能够识别 NAc 中的这些稀疏分布的细胞。我们使用 5 选择序列反应时间任务来测量冲动行为和持续注意力。在 5 选择序列反应时间任务中,我们使用光纤光度钙成像监测 FSIs 的活动,并使用化学遗传学和光遗传学方法来操纵 FSIs 的活动。我们使用电生理学、光遗传学和荧光原位杂交来确认这些方法是稳健的,并且特异性地针对 FSIs。
在执行 5 选择序列反应时间任务的小鼠中,NAc FSIs 在以正确反应结束的试验中表现出持续的活动,但在以过早反应结束的试验中,FSI 活动随时间而下降。在持续的化学遗传抑制或 NAc FSIs 的时间限定的光遗传抑制后,过早反应的数量显著增加,而反应潜伏期或一般运动活动没有任何变化。
这些实验提供了强有力的证据,表明 NAc FSIs 限制了冲动行为,这很可能是通过 GABA 介导的中间神经元的突触抑制。我们的发现可能为与冲动相关的疾病的病理生理学提供了深入的了解,并可能为基于电路的治疗干预的发展提供信息。