Suppr超能文献

作为一种差分进化方法的马尔可夫多智能体蒙特卡罗方法,用于受限和非受限哈特里-福克以及科恩-沙姆密度泛函理论的自洽场问题。

The Markovian Multiagent Monte-Carlo method as a differential evolution approach to the SCF problem for restricted and unrestricted Hartree-Fock and Kohn-Sham-DFT.

作者信息

Dittmer Linus Bjarne, Dreuw Andreas

机构信息

Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany.

出版信息

J Chem Phys. 2023 Oct 7;159(13). doi: 10.1063/5.0159737.

Abstract

In this paper we present the Markovian Multiagent Monte-Carlo Second Order Self-Consistent Field Algorithm (M3-SOSCF). This algorithm provides a highly reliable methodology for converging SCF calculations in single-reference methods using a modified differential evolution approach. Additionally, M3 is embarrassingly parallel and modular in regards to Newton-Raphson subroutines. We show that M3 is able to surpass contemporary SOSCFs in reliability, which is illustrated by a benchmark employing poor initial guesses and a second benchmark with SCF calculations which face difficulties using standard SCF algorithms. Furthermore, we analyse inherent properties of M3 and show that in addition to its robustness and efficiency, it is more user-friendly than current SOSCFs.

摘要

在本文中,我们提出了马尔可夫多智能体蒙特卡罗二阶自洽场算法(M3-SOSCF)。该算法提供了一种高度可靠的方法,用于使用改进的差分进化方法在单参考方法中收敛自洽场计算。此外,M3在牛顿-拉夫逊子例程方面具有易于并行化和模块化的特点。我们表明,M3在可靠性方面能够超越当代的二阶自洽场方法,这通过使用较差初始猜测的基准测试以及使用标准自洽场算法面临困难的自洽场计算的第二个基准测试得到了说明。此外,我们分析了M3的固有特性,并表明除了其稳健性和效率之外,它比当前的二阶自洽场方法更便于用户使用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验