Suppr超能文献

统计学和人工智能技术在识别儿童和青少年自杀风险因素中的应用。

Statistical and artificial intelligence techniques to identify risk factors for suicide in children and adolescents.

机构信息

Department of Industrial Engineering, University of Florence, Florence, Italy.

Child Neurology and Psychiatry Unit, Neuroscience Department, Children's Hospital A. Meyer IRCCS, Florence, Italy.

出版信息

Sci Prog. 2023 Oct-Dec;106(4):368504231199663. doi: 10.1177/00368504231199663.

Abstract

BACKGROUND

Suicidal Behaviors and Thoughts are a relevant public health issue that includes suicidal ideation, non-suicidal self-harm, attempted suicide, and failed suicides. Since there is a progression of suicidal behaviors, whereby suicide is more likely to be completed if there have already been previous behaviors or attempts to harm oneself, WHO has highlighted the need to detect early predictors of such suicidal behaviors, which can help identify individuals at risk, plan prevention strategies and implement specific therapeutic interventions, particularly in young people, thus reducing the number of deaths. This retrospective observational study aimed to identify early predictors of suicidal risk in 237 inpatients admitted for Suicidal Behaviors and Thoughts at Child and Adolescent Psychiatry Emergency Unit of the Meyer Children's Hospital, Florence, Italy.

METHODS

The study was subdivided into three phases: data collection, statistical analysis, and neural network. For each patient, we collected epidemiological and psychopathological data. We stratified the inpatients into two groups: "suicidal volition patients" and "suicidal motivation patients."

RESULTS

The hospitalization rate for suicidal behaviors and thoughts showed a growing trend from 2016 to 2020 (27.69 to 45.28%). Under 12 years of age, diagnosis of disruptive, impulse-control and conduct disorder, previous specialist care, history of attempted suicide, and intoxication as methods of suicide were statistically correlated to an increased risk of suicidal behaviors. Artificial intelligence, with an accuracy of 86.7%, confirmed these risk factors.

LIMITATIONS

The most important limitation of the study is its retrospective nature.

CONCLUSIONS

Our study identifies new early predictors of suicidal risk: age less than 12, diagnosis of disruptive, impulse-control and conduct disorder. In addition, suicidal volition behavior emerges as an important and underestimated risk factor. The use of artificial intelligence methods could be supporting the clinician in assessing suicidal risk.

摘要

背景

自杀行为和想法是一个相关的公共卫生问题,包括自杀意念、非自杀性自伤、自杀未遂和自杀失败。由于自杀行为存在进展性,即如果之前有过行为或试图伤害自己,自杀的可能性更大,因此世界卫生组织强调需要检测这种自杀行为的早期预测指标,这有助于识别有风险的个体,规划预防策略并实施特定的治疗干预措施,特别是在年轻人中,从而减少死亡人数。这项回顾性观察研究旨在确定意大利佛罗伦萨迈耶儿童医院儿童和青少年精神病急诊部收治的 237 名因自杀行为和想法住院的患者的自杀风险的早期预测指标。

方法

该研究分为三个阶段:数据收集、统计分析和神经网络。对于每个患者,我们收集了流行病学和精神病理学数据。我们将住院患者分为两组:“有自杀意愿的患者”和“有自杀动机的患者”。

结果

自杀行为和想法的住院率呈上升趋势,从 2016 年到 2020 年分别为 27.69%和 45.28%。12 岁以下、诊断为破坏性行为、冲动控制和品行障碍、以前接受过专科治疗、有自杀未遂史和使用中毒作为自杀方法与自杀行为风险增加相关。人工智能以 86.7%的准确率证实了这些危险因素。

局限性

该研究的最大局限性是其回顾性。

结论

我们的研究确定了自杀风险的新的早期预测指标:年龄小于 12 岁、诊断为破坏性行为、冲动控制和品行障碍。此外,自杀意愿行为是一个重要且被低估的风险因素。人工智能方法的使用可以帮助临床医生评估自杀风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b321/10548796/e7b349b3903f/10.1177_00368504231199663-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验