Zhang Yafang, Jiang Zhao, Qin Yu, Ye Chong, Liu Jinshui, Ouyang Ting
College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, China.
ACS Appl Mater Interfaces. 2023 Oct 18;15(41):48235-48245. doi: 10.1021/acsami.3c10677. Epub 2023 Oct 3.
Phase-change materials (PCMs) are promising thermal storage medium for thermal management due to their efficient thermal energy harvesting capabilities. However, the low thermal conductivity (TC) and poor shape stability of PCMs have hindered their practical applications. Construction of an interconnected three-dimensional (3D) heat-conductive structure is an effective way to build phonon conduits and provide PCM confinement. Phonon scattering at the interface is an unavoidable effect that undermines the TC improvement in the PCM composite and necessitates careful engineering. This study focuses on creating a highly thermally conductive 3D carbon-bonded graphite fiber (CBGF) network to enhance the TC of the PCM, with attention especially on thermal interface engineering considering both filler-matrix (F-M) and filler-filler (F-F) interfaces. The composite with an optimized proportion of F-M and F-F interface area achieves the highest TC of 45.48 W·m·K, which is 188.5 times higher than that of the pure PCM, and a high TC enhancement per volume fraction of the filler (TCEF) of 831% per 1 vol % loading. This also results in an enhanced spatial construction for PCM confinement during the phase change. The results emphasize the significance of interface engineering in creating high-TC and form-stable phase-change composites, providing insightful guidance for rational structural design.
相变材料(PCMs)因其高效的热能收集能力,是用于热管理的很有前景的储热介质。然而,相变材料的低导热率(TC)和较差的形状稳定性阻碍了它们的实际应用。构建相互连接的三维(3D)导热结构是构建声子通道并提供相变材料约束的有效方法。界面处的声子散射是一种不可避免的效应,它会削弱相变材料复合材料中导热率的提高,因此需要精心设计。本研究专注于创建一个高导热的三维碳键合石墨纤维(CBGF)网络,以提高相变材料的导热率,尤其关注同时考虑填料-基体(F-M)和填料-填料(F-F)界面的热界面工程。具有优化的F-M和F-F界面面积比例的复合材料实现了45.48 W·m·K的最高导热率,这比纯相变材料高出188.5倍,并且每1体积%填料加载量的填料体积分数的高导热率增强(TCEF)为831%。这也导致了相变过程中用于相变材料约束增强的空间结构。结果强调了界面工程在创建高导热率和形状稳定的相变复合材料中的重要性,为合理的结构设计提供了有见地的指导。