Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India.
Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany.
Plant Commun. 2023 Nov 13;4(6):100726. doi: 10.1016/j.xplc.2023.100726. Epub 2023 Oct 2.
Rapid climate change has led to enhanced soil salinity, one of the major determinants of land degradation, resulting in low agricultural productivity. This has a strong negative impact on food security and environmental sustainability. Plants display various physiological, developmental, and cellular responses to deal with salt stress. Recent studies have highlighted the root cap as the primary stress sensor and revealed its crucial role in halotropism. The root cap covers the primary root meristem and is the first cell type to sense and respond to soil salinity, relaying the signal to neighboring cell types. However, it remains unclear how root-cap cells perceive salt stress and contribute to the salt-stress response. Here, we performed a root-cap cell-specific proteomics study to identify changes in the proteome caused by salt stress. The study revealed a very specific salt-stress response pattern in root-cap cells compared with non-root-cap cells and identified several novel proteins unique to the root cap. Root-cap-specific protein-protein interaction (PPI) networks derived by superimposing proteomics data onto known global PPI networks revealed that the endoplasmic reticulum (ER) stress pathway is specifically activated in root-cap cells upon salt stress. Importantly, we identified root-cap-specific jacalin-associated lectins (JALs) expressed in response to salt stress. A JAL10-GFP fusion protein was shown to be localized to the ER. Analysis of jal10 mutants indicated a role for JAL10 in regulating the ER stress pathway in response to salt. Taken together, our findings highlight the participation of specific root-cap proteins in salt-stress response pathways. Furthermore, root-cap-specific JAL proteins and their role in the salt-mediated ER stress pathway open a new avenue for exploring tolerance mechanisms and devising better strategies to increase plant salinity tolerance and enhance agricultural productivity.
快速的气候变化导致土壤盐度升高,这是土地退化的主要决定因素之一,导致农业生产力下降。这对粮食安全和环境可持续性产生了强烈的负面影响。植物表现出各种生理、发育和细胞反应来应对盐胁迫。最近的研究强调了根冠作为主要胁迫感受器,并揭示了它在向光性中的关键作用。根冠覆盖着主根分生组织,是第一个感知和响应土壤盐度的细胞类型,将信号传递给相邻的细胞类型。然而,根冠细胞如何感知盐胁迫并有助于盐胁迫反应仍不清楚。在这里,我们进行了根冠细胞特异性蛋白质组学研究,以确定盐胁迫引起的蛋白质组变化。研究表明,与非根冠细胞相比,根冠细胞的盐胁迫反应模式非常特殊,并鉴定出几种根冠特有的新蛋白质。通过将蛋白质组学数据叠加到已知的全局蛋白质相互作用网络上,得到的根冠特异性蛋白质-蛋白质相互作用(PPI)网络表明,内质网(ER)应激途径在盐胁迫下特异性地在根冠细胞中被激活。重要的是,我们鉴定了根冠特异性蓖麻凝集素(JAL)在响应盐胁迫时表达。JAL10-GFP 融合蛋白被证明定位于内质网。 jal10 突变体的分析表明 JAL10 在调节 ER 应激途径以响应盐方面发挥作用。总之,我们的研究结果强调了特定的根冠蛋白参与盐胁迫反应途径。此外,根冠特异性 JAL 蛋白及其在盐介导的 ER 应激途径中的作用为探索耐受机制和设计提高植物耐盐性和提高农业生产力的更好策略开辟了新途径。