Vera-Estrella Rosario, Barkla Bronwyn J, Pantoja Omar
Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP 62210, Mexico.
Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP 62210, Mexico.
J Proteomics. 2014 Dec 5;111:113-27. doi: 10.1016/j.jprot.2014.05.018. Epub 2014 Jun 2.
Halophytes have evolved unique molecular strategies to overcome high soil salinity but we still know very little about the main mechanisms that these plants use to complete their lifecycle under salinity stress. One useful approach to further our understanding in this area is to directly compare the response to salinity of two closely related species which show diverse levels of salt tolerance. Here we present a comparative proteomic study using DIGE of leaf microsomal proteins to identify salt-responsive membrane associated proteins in Arabidopsis thaliana (a glycophyte) and Thellungiella salsuginea (a halophyte). While a small number of distinct protein abundance changes were observed upon salt stress in both species, the most notable differences were observed between species and specifically, in untreated plants with a total of 36 proteins displaying significant abundance changes. Gene ontology (GO) term enrichment analysis showed that the majority of these proteins were distributed into two functional categories; transport (31%) and carbohydrate metabolism (17%). Results identify several novel salt responsive proteins in this system and support the theory that T. salsuginea shows a high degree of salt-tolerance because molecular mechanisms are primed to deal with the stress. This intrinsic ability to anticipate salinity stress distinguishes it from the glycophyte A. thaliana.
There is significant interest in understanding the molecular mechanisms that plants use to tolerate salinity as soil salinization is becoming an increasing concern for agriculture with high soil Na(+) levels leading to reduced yields and economic loss. Much of our knowledge on the molecular mechanisms employed by plants to combat salinity stress has come from work on salt-sensitive plants, but studies on naturally occurring highly salt-resistant plants, halophytes, and direct comparisons between closely related glycophytes and halophytes, could help to further our understanding of salinity tolerance mechanisms. In this study, employing two closely related species which differ markedly in their salt-tolerance, we carried out a quantitative proteomic approach using 2D-DIGE to identify salt-responsive proteins and compare and contrast the differences between the two plant species. Our work complements a previous study using iTRAQ technology (34) and highlights the benefits of using alternative technologies and approaches to gain a broader representation of the salt-responsive proteome in these species.
盐生植物已经进化出独特的分子策略来克服高土壤盐分,但我们对这些植物在盐分胁迫下完成其生命周期所使用的主要机制仍然知之甚少。在这一领域进一步加深理解的一种有用方法是直接比较两个亲缘关系密切但耐盐水平不同的物种对盐分的反应。在此,我们展示了一项使用差异凝胶电泳(DIGE)对叶片微粒体蛋白进行的比较蛋白质组学研究,以鉴定拟南芥(一种甜土植物)和盐芥(一种盐生植物)中对盐响应的膜相关蛋白。虽然在两种植物的盐胁迫下都观察到少量明显的蛋白质丰度变化,但最显著的差异是在物种之间观察到的,特别是在未经处理的植物中,共有36种蛋白质显示出显著的丰度变化。基因本体(GO)术语富集分析表明,这些蛋白质中的大多数分布在两个功能类别中;转运(31%)和碳水化合物代谢(17%)。结果在该系统中鉴定出几种新的盐响应蛋白,并支持盐芥表现出高度耐盐性的理论,因为其分子机制已准备好应对胁迫。这种预测盐分胁迫的内在能力使其与甜土植物拟南芥区分开来。
随着土壤盐渍化对农业的影响日益受到关注,高土壤钠(+)水平导致产量下降和经济损失,了解植物耐受盐分的分子机制具有重要意义。我们对植物对抗盐分胁迫所采用的分子机制的许多了解来自于对盐敏感植物的研究,但对天然存在的高度耐盐植物、盐生植物以及亲缘关系密切的甜土植物和盐生植物之间的直接比较,有助于进一步加深我们对耐盐机制的理解。在本研究中,我们使用两个耐盐性差异显著的亲缘关系密切的物种,采用二维差异凝胶电泳(2D-DIGE)进行定量蛋白质组学方法,以鉴定盐响应蛋白,并比较和对比这两种植物之间的差异。我们的工作补充了之前使用串联质谱标签(iTRAQ)技术的一项研究,并突出了使用替代技术和方法以更全面地呈现这些物种中盐响应蛋白质组的益处。