文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能模型预测口腔癌术后复发:多层感知器

Prediction of postoperative recurrence of oral cancer by artificial intelligence model: Multilayer perceptron.

作者信息

Cai Yongkang, Xie Yutong, Zhang Shulian, Wang Yuepeng, Wang Yan, Chen Jian, Huang Zhiquan

机构信息

Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, China.

Australian Institute for Machine Learning, University of Adelaide, Adelaide, South Australia, Australia.

出版信息

Head Neck. 2023 Dec;45(12):3053-3066. doi: 10.1002/hed.27533. Epub 2023 Oct 3.


DOI:10.1002/hed.27533
PMID:37789719
Abstract

BACKGROUND: Postoperative recurrence of oral cancer is an important factor affecting the prognosis of patients. Artificial intelligence is used to establish a machine learning model to predict the risk of postoperative recurrence of oral cancer. METHODS: The information of 387 patients with postoperative oral cancer were collected to establish the multilayer perceptron (MLP) model. The comprehensive variable model was compared with the characteristic variable model, and the MLP model was compared with other models to evaluate the sensitivity of different models in the prediction of postoperative recurrence of oral cancer. RESULTS: The overall performance of the MLP model under comprehensive variable input was the best. CONCLUSION: The MLP model has good sensitivity to predict postoperative recurrence of oral cancer, and the predictive model with variable input training is better than that with characteristic variable input.

摘要

背景:口腔癌术后复发是影响患者预后的重要因素。利用人工智能建立机器学习模型以预测口腔癌术后复发风险。 方法:收集387例口腔癌术后患者的信息,建立多层感知器(MLP)模型。将综合变量模型与特征变量模型进行比较,将MLP模型与其他模型进行比较,以评估不同模型在预测口腔癌术后复发方面的敏感性。 结果:综合变量输入下MLP模型的整体性能最佳。 结论:MLP模型在预测口腔癌术后复发方面具有良好的敏感性,且变量输入训练的预测模型优于特征变量输入的预测模型。

相似文献

[1]
Prediction of postoperative recurrence of oral cancer by artificial intelligence model: Multilayer perceptron.

Head Neck. 2023-12

[2]
[Establishment of artificial neural network model for predicting lymph node metastasis in patients with stage Ⅱ-Ⅲ gastric cancer].

Zhonghua Wei Chang Wai Ke Za Zhi. 2022-4-25

[3]
The use of multilayer perceptron and radial basis function: an artificial intelligence model to predict progression of oral cancer.

Int J Surg. 2023-1-1

[4]
Development and validation of artificial intelligence models for preoperative prediction of inferior mesenteric artery lymph nodes metastasis in left colon and rectal cancer.

Eur J Surg Oncol. 2022-12

[5]
Application of artificial intelligence and machine learning for prediction of oral cancer risk.

J Oral Pathol Med. 2021-5

[6]
Using artificial intelligence to predict adverse outcomes in emergency department patients with hyperglycemic crises in real time.

BMC Endocr Disord. 2023-10-24

[7]
A commentary on 'The use of multilayer perceptron and radial basis function: an artificial intelligence model to predict progression of oral cancer': correspondence.

Int J Surg. 2024-4-1

[8]
An artificial intelligence approach for predicting cardiotoxicity in breast cancer patients receiving anthracycline.

Arch Toxicol. 2022-10

[9]
The Use of Artificial Neural Networks to Predict the Physicochemical Characteristics of Water Quality in Three District Municipalities, Eastern Cape Province, South Africa.

Int J Environ Res Public Health. 2021-5-14

[10]
Modeling and optimizing in vitro percentage and speed callus induction of carrot via Multilayer Perceptron-Single point discrete GA and radial basis function.

BMC Biotechnol. 2022-11-5

引用本文的文献

[1]
Establishment and validation of a recurrence risk model in early-stage tongue squamous cell carcinoma patients incorporating immune-inflammatory biomarkers and clinicopathological parameters.

Am J Cancer Res. 2025-7-15

[2]
Integrating artificial intelligence in healthcare: applications, challenges, and future directions.

Future Sci OA. 2025-12

[3]
Predictive modeling of pregnancy outcomes utilizing multiple machine learning techniques for in vitro fertilization-embryo transfer.

BMC Pregnancy Childbirth. 2025-3-19

[4]
Recurrent and Metastatic Head and Neck Cancer: Mechanisms of Treatment Failure, Treatment Paradigms, and New Horizons.

Cancers (Basel). 2025-1-5

[5]
AI illuminates paths in oral cancer: transformative insights, diagnostic precision, and personalized strategies.

EXCLI J. 2024-9-3

[6]
Artificial Intelligence in Head and Neck Cancer: Innovations, Applications, and Future Directions.

Curr Oncol. 2024-9-6

[7]
Prognosing post-treatment outcomes of head and neck cancer using structured data and machine learning: A systematic review.

PLoS One. 2024

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索