Chong Peng Lean, Vaigeshwari Vikneswaran, Mohammed Reyasudin Basir Khan, Noor Hidayah Binti Ros Azamin, Tatchanaamoorti Purnshatman, Yeow Jian Ai, Kong Feng Yuan
School of Engineering and Computing, MILA University, Nilai, Negeri Sembilan, Malaysia.
Universiti Tun Abdul Razak (UNIRAZAK), Kuala Lumpur, Malaysia.
Future Sci OA. 2025 Dec;11(1):2527505. doi: 10.1080/20565623.2025.2527505. Epub 2025 Jul 4.
Artificial intelligence (AI) has demonstrated remarkable potential in transforming medical diagnostics across various healthcare domains. This paper explores AI applications in cancer detection, dental medicine, brain tumor database management, and personalized treatment planning. AI technologies such as machine learning and deep learning have enhanced diagnostic accuracy, improved data management, and facilitated personalized treatment strategies. In cancer detection, AI-driven imaging analysis aids in early diagnosis and precise treatment decisions. In dental healthcare, AI applications improve oral disease detection, treatment planning, and workflow efficiency. AI-powered brain tumor databases streamline medical data management, enhancing diagnostic precision and research outcomes. Personalized treatment planning benefits from AI algorithms that analyze genetic, clinical, and lifestyle data to recommend tailored interventions. Despite these advancements, AI integration faces challenges related to data privacy, algorithm bias, and regulatory concerns. Addressing these issues requires improved data governance, ethical frameworks, and interdisciplinary collaboration among healthcare professionals, researchers, and policymakers. Through comprehensive validation, educational initiatives, and standardized protocols, AI adoption in healthcare can enhance patient outcomes and optimize clinical decision-making, advancing the future of precision medicine and personalized care.
人工智能(AI)在变革各个医疗领域的医学诊断方面已展现出巨大潜力。本文探讨了人工智能在癌症检测、牙科医学、脑肿瘤数据库管理以及个性化治疗规划中的应用。机器学习和深度学习等人工智能技术提高了诊断准确性,改善了数据管理,并推动了个性化治疗策略的发展。在癌症检测中,人工智能驱动的成像分析有助于早期诊断和精确的治疗决策。在牙科保健中,人工智能应用提高了口腔疾病检测、治疗规划和工作流程效率。人工智能驱动的脑肿瘤数据库简化了医疗数据管理,提高了诊断精度和研究成果。个性化治疗规划受益于人工智能算法,这些算法分析基因、临床和生活方式数据以推荐量身定制的干预措施。尽管取得了这些进展,但人工智能的整合仍面临与数据隐私、算法偏差和监管问题相关的挑战。解决这些问题需要改善数据治理、道德框架以及医疗保健专业人员、研究人员和政策制定者之间的跨学科合作。通过全面验证、教育举措和标准化协议,医疗保健领域采用人工智能可以改善患者预后并优化临床决策,推动精准医学和个性化护理的未来发展。
Therap Adv Gastroenterol. 2025-6-23
Comput Biol Med. 2024-9
Arch Ital Urol Androl. 2025-6-30
J Health Organ Manag. 2025-6-30
Healthcare (Basel). 2025-2-26
J Craniofac Surg. 2024-10-29
Sci Data. 2024-5-14
J Multidiscip Healthc. 2023-6-26
J Med Internet Res. 2023-3-31