Tian Yumiao, Liu Xiaochun, Hou Pengfei, Xie Yu, Du Fei, Chen Gang, Vojvodic Aleksandra, Meng Xing
Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, P. R. China.
Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
Phys Chem Chem Phys. 2023 Oct 18;25(40):27181-27188. doi: 10.1039/d3cp03558a.
The two-dimensional (2D) metallic phase of MoS, 1T-MoS, has extraordinary electrical conductivity in contrast to the common 2D semiconducting phase, 2H-MoS. However, the thermodynamic instabilities of 1T-MoS hinder its application. In this work, we investigate the possibilities of stabilizing 1T-MoS through heterostructure design using first-principles calculations. We found that MXene-based heterostructures could hamper phase transitions from 1T-MoS to 2H-MoS enabled by a larger phase transition kinetic energy barrier. Based on this finding, we propose a general and effective strategy for stabilizing 1T-MoS, that is, building heterostructures using 1T-MoS and oxygen-functionalized MXenes. Besides, we have also observed that due to the occurrence of electron transfer in the heterostructure, 1T-MoS in the heterostructure exhibits improved hydrogen adsorption free energy and more active sites compared to the monolayer 1T-MoS. These findings provide guidance for promoting and developing 1T-MoS for practical applications. In addition, the proposed heterostructure design strategy could inspire the study of phase transition behaviors and electrochemical properties of materials using interfaces.
与常见的二维半导体相2H-MoS₂ 相比,二硫化钼的二维(2D)金属相1T-MoS₂ 具有非凡的导电性。然而,1T-MoS₂ 的热力学不稳定性阻碍了其应用。在这项工作中,我们使用第一性原理计算研究了通过异质结构设计来稳定1T-MoS₂ 的可能性。我们发现,基于MXene的异质结构可以通过更大的相变动能势垒来阻碍从1T-MoS₂ 到2H-MoS₂ 的相变。基于这一发现,我们提出了一种通用且有效的稳定1T-MoS₂ 的策略,即使用1T-MoS₂ 和氧官能化的MXene构建异质结构。此外,我们还观察到,由于异质结构中发生了电子转移,与单层1T-MoS₂ 相比,异质结构中的1T-MoS₂ 表现出改善的氢吸附自由能和更多的活性位点。这些发现为推动和开发用于实际应用的1T-MoS₂ 提供了指导。此外,所提出的异质结构设计策略可能会激发利用界面研究材料的相变行为和电化学性质。