利用图注意力自动编码器、正无标签学习和深度神经网络预测潜在的微生物-疾病关联。

Predicting potential microbe-disease associations with graph attention autoencoder, positive-unlabeled learning, and deep neural network.

作者信息

Peng Lihong, Huang Liangliang, Tian Geng, Wu Yan, Li Guang, Cao Jianying, Wang Peng, Li Zejun, Duan Lian

机构信息

School of Computer Science, Hunan University of Technology, Zhuzhou, China.

College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, China.

出版信息

Front Microbiol. 2023 Sep 18;14:1244527. doi: 10.3389/fmicb.2023.1244527. eCollection 2023.

Abstract

BACKGROUND

Microbes have dense linkages with human diseases. Balanced microorganisms protect human body against physiological disorders while unbalanced ones may cause diseases. Thus, identification of potential associations between microbes and diseases can contribute to the diagnosis and therapy of various complex diseases. Biological experiments for microbe-disease association (MDA) prediction are expensive, time-consuming, and labor-intensive.

METHODS

We developed a computational MDA prediction method called GPUDMDA by combining graph attention autoencoder, positive-unlabeled learning, and deep neural network. First, GPUDMDA computes disease similarity and microbe similarity matrices by integrating their functional similarity and Gaussian association profile kernel similarity, respectively. Next, it learns the feature representation of each microbe-disease pair using graph attention autoencoder based on the obtained disease similarity and microbe similarity matrices. Third, it selects a few reliable negative MDAs based on positive-unlabeled learning. Finally, it takes the learned MDA features and the selected negative MDAs as inputs and designed a deep neural network to predict potential MDAs.

RESULTS

GPUDMDA was compared with four state-of-the-art MDA identification models (i.e., MNNMDA, GATMDA, LRLSHMDA, and NTSHMDA) on the HMDAD and Disbiome databases under five-fold cross validations on microbes, diseases, and microbe-disease pairs. Under the three five-fold cross validations, GPUDMDA computed the best AUCs of 0.7121, 0.9454, and 0.9501 on the HMDAD database and 0.8372, 0.8908, and 0.8948 on the Disbiome database, respectively, outperforming the other four MDA prediction methods. Asthma is the most common chronic respiratory condition and affects ~339 million people worldwide. Inflammatory bowel disease is a class of globally chronic intestinal disease widely existed in the gut and gastrointestinal tract and extraintestinal organs of patients. Particularly, inflammatory bowel disease severely affects the growth and development of children. We used the proposed GPUDMDA method and found that had potential associations with both asthma and inflammatory bowel disease and need further biological experimental validation.

CONCLUSION

The proposed GPUDMDA demonstrated the powerful MDA prediction ability. We anticipate that GPUDMDA helps screen the therapeutic clues for microbe-related diseases.

摘要

背景

微生物与人类疾病有着紧密的联系。平衡的微生物群可保护人体免受生理紊乱之害,而失衡的微生物群则可能引发疾病。因此,识别微生物与疾病之间的潜在关联有助于各种复杂疾病的诊断和治疗。用于微生物 - 疾病关联(MDA)预测的生物学实验成本高昂、耗时且 labor-intensive。

方法

我们通过结合图注意力自动编码器、正样本未标记学习和深度神经网络,开发了一种名为GPUDMDA的计算MDA预测方法。首先,GPUDMDA分别通过整合疾病的功能相似性和高斯关联轮廓核相似性来计算疾病相似性矩阵和微生物相似性矩阵。接下来,基于获得的疾病相似性矩阵和微生物相似性矩阵,使用图注意力自动编码器学习每个微生物 - 疾病对的特征表示。第三,基于正样本未标记学习选择一些可靠的负向MDA。最后,将学习到的MDA特征和选择的负向MDA作为输入,并设计一个深度神经网络来预测潜在的MDA。

结果

在HMDAD和Disbiome数据库上,对微生物、疾病和微生物 - 疾病对进行五折交叉验证时,将GPUDMDA与四种最先进的MDA识别模型(即MNNMDA、GATMDA、LRLSHMDA和NTSHMDA)进行了比较。在三次五折交叉验证下,GPUDMDA在HMDAD数据库上分别计算出最佳AUC为0.7121、0.9454和0.9501,在Disbiome数据库上分别为0.8372、0.8908和0.8948,优于其他四种MDA预测方法。哮喘是最常见的慢性呼吸道疾病,全球约有3.39亿人受其影响。炎症性肠病是一类全球范围内的慢性肠道疾病,广泛存在于患者的肠道、胃肠道及肠外器官中。特别是,炎症性肠病严重影响儿童的生长发育。我们使用所提出的GPUDMDA方法,发现 与哮喘和炎症性肠病均有潜在关联,需要进一步的生物学实验验证。

结论

所提出的GPUDMDA展示了强大的MDA预测能力。我们预计GPUDMDA有助于筛选与微生物相关疾病的治疗线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5535/10543759/0beca8b29028/fmicb-14-1244527-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索