Suppr超能文献

基于双分支图卷积网络预测潜在的微生物-疾病关联。

Predicting potential microbe-disease associations based on dual branch graph convolutional network.

作者信息

Chen Jing, Zhu Yongjun, Yuan Qun

机构信息

School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China.

Department of Respiratory Medicine, The Affiliated Suzhou Hospital of Nanjing, University Medical School, Suzhou, China.

出版信息

J Cell Mol Med. 2024 Aug;28(15):e18571. doi: 10.1111/jcmm.18571.

Abstract

Studying the association between microbes and diseases not only aids in the prevention and diagnosis of diseases, but also provides crucial theoretical support for new drug development and personalized treatment. Due to the time-consuming and costly nature of laboratory-based biological tests to confirm the relationship between microbes and diseases, there is an urgent need for innovative computational frameworks to anticipate new associations between microbes and diseases. Here, we propose a novel computational approach based on a dual branch graph convolutional network (GCN) module, abbreviated as DBGCNMDA, for identifying microbe-disease associations. First, DBGCNMDA calculates the similarity matrix of diseases and microbes by integrating functional similarity and Gaussian association spectrum kernel (GAPK) similarity. Then, semantic information from different biological networks is extracted by two GCN modules from different perspectives. Finally, the scores of microbe-disease associations are predicted based on the extracted features. The main innovation of this method lies in the use of two types of information for microbe/disease similarity assessment. Additionally, we extend the disease nodes to address the issue of insufficient features due to low data dimensionality. We optimize the connectivity between the homogeneous entities using random walk with restart (RWR), and then use the optimized similarity matrix as the initial feature matrix. In terms of network understanding, we design a dual branch GCN module, namely GlobalGCN and LocalGCN, to fine-tune node representations by introducing side information, including homologous neighbour nodes. We evaluate the accuracy of the DBGCNMDA model using five-fold cross-validation (5-fold-CV) technique. The results show that the area under the receiver operating characteristic curve (AUC) and area under the precision versus recall curve (AUPR) of the DBGCNMDA model in the 5-fold-CV are 0.9559 and 0.9630, respectively. The results from the case studies using published experimental data confirm a significant number of predicted associations, indicating that DBGCNMDA is an effective tool for predicting potential microbe-disease associations.

摘要

研究微生物与疾病之间的关联不仅有助于疾病的预防和诊断,还为新药研发和个性化治疗提供关键的理论支持。由于基于实验室的生物学测试来确认微生物与疾病之间的关系既耗时又昂贵,因此迫切需要创新的计算框架来预测微生物与疾病之间的新关联。在此,我们提出了一种基于双分支图卷积网络(GCN)模块的新型计算方法,简称为DBGCNMDA,用于识别微生物-疾病关联。首先,DBGCNMDA通过整合功能相似性和高斯关联谱核(GAPK)相似性来计算疾病和微生物的相似性矩阵。然后,两个GCN模块从不同角度提取来自不同生物网络的语义信息。最后,基于提取的特征预测微生物-疾病关联的分数。该方法的主要创新在于使用两种类型的信息进行微生物/疾病相似性评估。此外,我们扩展了疾病节点以解决由于数据维度低导致的特征不足问题。我们使用带重启的随机游走(RWR)优化同构实体之间的连通性,然后将优化后的相似性矩阵用作初始特征矩阵。在网络理解方面,我们设计了一个双分支GCN模块,即全局GCN和局部GCN,通过引入包括同源邻居节点在内的辅助信息来微调节点表示。我们使用五折交叉验证(5折-CV)技术评估DBGCNMDA模型的准确性。结果表明,DBGCNMDA模型在5折交叉验证中的受试者工作特征曲线下面积(AUC)和精确率-召回率曲线下面积(AUPR)分别为0.9559和0.9630。使用已发表实验数据的案例研究结果证实了大量预测的关联,表明DBGCNMDA是预测潜在微生物-疾病关联的有效工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff2d/11291560/e1dc3c7e4263/JCMM-28-e18571-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验