Yu Xiaohan, Tang Dai, Chng Jia Yuan, Sholl David S
School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.
J Phys Chem C Nanomater Interfaces. 2023 Sep 14;127(38):19229-19239. doi: 10.1021/acs.jpcc.3c04533. eCollection 2023 Sep 28.
Adsorption-based separations using metal-organic frameworks (MOFs) are promising candidates for replacing common energy-intensive separation processes. The so-called adsorption space formed by the combination of billions of possible molecules and thousands of reported MOFs is vast. It is very challenging to comprehensively evaluate the performance of MOFs for chemical separation through experiments. Molecular simulations and machine learning (ML) have been widely applied to make predictions for adsorption-based separations. Previous ML approaches to these issues were typically limited to smaller molecules and often had poor accuracy in the dilute limit. To enable exploration of a wider adsorption space, we carefully selected a diverse set of 45 molecules and 335 MOFs and generated single-component isotherms of 15,075 MOF-molecule pairs by grand canonical Monte Carlo. Using this database, we successfully developed accurate ( > 0.9) machine learning models predicting adsorption isotherms of diverse molecules in large libraries of MOFs. With this approach, we can efficiently make predictions of large collections of MOFs for arbitrary mixture separations. By combining molecular simulation data and ML predictions with Ideal Adsorbed Solution Theory, we tested the ability of these approaches to make predictions of adsorption selectivity and loading for challenging near-azeotropic mixtures.
使用金属有机框架(MOF)的基于吸附的分离方法有望取代常见的能源密集型分离过程。由数十亿种可能的分子和数千种已报道的MOF组合形成的所谓吸附空间非常广阔。通过实验全面评估MOF用于化学分离的性能极具挑战性。分子模拟和机器学习(ML)已被广泛应用于基于吸附的分离预测。以前针对这些问题的ML方法通常仅限于较小的分子,并且在稀释极限下的准确性往往较差。为了能够探索更广阔的吸附空间,我们精心挑选了45种不同的分子和335种MOF,并通过巨正则蒙特卡罗方法生成了15075个MOF-分子对的单组分等温线。利用这个数据库,我们成功开发了准确的(>0.9)机器学习模型,用于预测大型MOF库中不同分子的吸附等温线。通过这种方法,我们可以有效地对大量MOF进行任意混合物分离的预测。通过将分子模拟数据和ML预测与理想吸附溶液理论相结合,我们测试了这些方法对具有挑战性的近共沸混合物的吸附选择性和负载量进行预测的能力。