Yu Xiaohan, Chng Jia Yuan, Sholl David S
School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States.
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.
J Phys Chem C Nanomater Interfaces. 2025 May 1;129(19):9217-9230. doi: 10.1021/acs.jpcc.5c01483. eCollection 2025 May 15.
Metal organic framework (MOF)-based mixed-matrix membranes (MMMs), which embed MOF particles in polymer matrices, combine the advantages of polymeric and inorganic membranes. Multiple previous studies have used the Maxwell model together with molecular simulations and machine learning (ML) to predict the performance of MOF/polymer MMMs. However, the assumption of rigid MOF frameworks in molecular simulations limited the accuracy of the data used in the predictions, particularly in predicting molecular diffusivities. We developed a novel workflow integrating ML models with consideration of MOF flexibility to predict the permeability and selectivity of 131,722 MMMs for CO/CH, O/N and He/H separations. The full range of achievable MMM performance within the Maxwell model was analyzed, and several promising MOFs were identified using this workflow. This approach offers an efficient tool for screening any polymer and MOF combination in gas separation applications.
基于金属有机框架(MOF)的混合基质膜(MMM)将MOF颗粒嵌入聚合物基质中,结合了聚合物膜和无机膜的优点。此前多项研究使用麦克斯韦模型以及分子模拟和机器学习(ML)来预测MOF/聚合物MMM的性能。然而,分子模拟中MOF框架刚性的假设限制了预测所用数据的准确性,尤其是在预测分子扩散率方面。我们开发了一种新颖的工作流程,将考虑MOF灵活性的ML模型整合起来,以预测131,722种用于CO/CH、O/N和He/H分离的MMM的渗透率和选择性。分析了麦克斯韦模型内可实现的MMM性能的全范围,并使用此工作流程确定了几种有前景的MOF。这种方法为气体分离应用中筛选任何聚合物和MOF组合提供了一种有效的工具。