Suppr超能文献

用于选择性高效一氧化碳电催化的均匀空位增强轨道杂化

Homogeneous Vacancies-Enhanced Orbital Hybridization for Selective and Efficient CO-to-CO Electrocatalysis.

作者信息

Qin Yuntong, Zhan Guangming, Tang Cun, Yang Di, Wang Xibo, Yang Jianhua, Mao Chengliang, Hao Zhentian, Wang Shuangyu, Qin Yixin, Li Hongmei, Chen Ke, Liu Min, Li Jie

机构信息

School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China.

School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

Nano Lett. 2023 Oct 25;23(20):9227-9234. doi: 10.1021/acs.nanolett.3c01905. Epub 2023 Oct 4.

Abstract

Crafting vacancies offers an efficient route to upgrade the selectivity and productivity of nanomaterials for CO electroreduction. However, defective nanoelectrocatalysts bear catalytically active vacancies mostly on their surface, with the rest of the interior atoms adiaphorous for CO-to-product conversion. Herein, taking nanosilver as a prototype, we arouse the catalytic ability of internal atoms by creating homogeneous vacancies realized via electrochemical reconstruction of silver halides. The homogeneous vacancies-rich nanosilver, compared to the surface vacancies-dominated counterpart, features a more positive d-band center to trigger an intensified hybridization of the Ag_d orbital with the C_P orbital of the *COOH intermediate, leading to an accelerated CO-to-CO transformation. These structural and electronic merits allow a large-area (9 cm) electrode to generate nearly pure CO with a CO/H Faradaic efficiency ratio of 6932 at an applied current of 7.5 A. These findings highlight the potential of designing new-type defects in realizing the industrialization of electrocatalytic CO reduction.

摘要

制备空位为提升用于CO电还原的纳米材料的选择性和生产率提供了一条有效途径。然而,有缺陷的纳米电催化剂的催化活性空位大多位于其表面,其余内部原子对于CO向产物的转化是惰性的。在此,以纳米银为原型,我们通过对卤化银进行电化学重构来产生均匀空位,从而激发内部原子的催化能力。与以表面空位为主的对应物相比,富含均匀空位的纳米银具有更正的d带中心,从而引发Ag_d轨道与*COOH中间体的C_P轨道的增强杂化,导致CO到CO的转化加速。这些结构和电子优势使得大面积(9平方厘米)电极在7.5 A的施加电流下能够产生几乎纯的CO,CO/H法拉第效率比为6932。这些发现突出了设计新型缺陷在实现电催化CO还原工业化方面的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验