Suppr超能文献

用于纤维素活化态绿色化学改性的全生物基离子液体

Fully Bio-Based Ionic Liquids for Green Chemical Modification of Cellulose in the Activated-State.

作者信息

Marcos Celada Lukas, Martín Judith, Dvinskikh Sergey V, Olsén Peter

机构信息

Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 100 44, Stockholm, Sweden.

Department of chemistry, KTH Royal Institute of Technology, Teknikringen 30, 100 44, Stockholm, Sweden.

出版信息

ChemSusChem. 2024 Feb 8;17(3):e202301233. doi: 10.1002/cssc.202301233. Epub 2023 Nov 15.

Abstract

Biopolymers, especially cellulose, are vital to transitioning to a circular economy and reducing our reliance on fossil fuels. However, for many applications a high degree of cellulose hydroxyl modification is necessary. The challenge is that the chemical features of the hydroxyls of cellulose and water are similar. Therefore, chemical modification of cellulose is often explored under non-aqueous conditions with systems that result in high hydroxyl accessibility and reduce cellulose aggregation. Unfortunately, these systems depend on hazardous and complex solvents from fossil resources, which diverge from the initial sustainability objectives. To address this, we developed three new betaine-based ionic liquids that are fully bio-based, scalable, and green. We found that a specific ionic liquid had the perfect chemical features for the chemical activation of cellulose without disturbing its crystalline ordering. The high activation in heterogeneous conditions was exemplified by reacting cellulose with succinic anhydride, resulting in more than 30 % conversion of all hydroxyls on cellulose. Overall, this work opens new perspectives for the derivatization of cellulosic materials while simultaneously "keeping it green".

摘要

生物聚合物,尤其是纤维素,对于向循环经济转型以及减少我们对化石燃料的依赖至关重要。然而,对于许多应用而言,高度的纤维素羟基改性是必要的。挑战在于纤维素羟基和水的化学特性相似。因此,纤维素的化学改性通常在非水条件下进行,采用能实现高羟基可及性并减少纤维素聚集的体系。不幸的是,这些体系依赖于来自化石资源的危险且复杂的溶剂,这与最初的可持续发展目标背道而驰。为解决这一问题,我们开发了三种全新的完全基于生物、可扩展且绿色的甜菜碱类离子液体。我们发现一种特定的离子液体具有用于纤维素化学活化的完美化学特性,同时不会干扰其晶体有序性。在非均相条件下的高活化作用通过纤维素与琥珀酸酐反应得以体现,纤维素上所有羟基的转化率超过30%。总体而言,这项工作为纤维素材料的衍生化开辟了新的前景,同时“保持其绿色环保”。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验