Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing, China.
Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining, China.
Plant Biotechnol J. 2024 Jan;22(1):216-232. doi: 10.1111/pbi.14181. Epub 2023 Oct 4.
Lipid biosynthesis and transport are essential for plant male reproduction. Compared with Arabidopsis and rice, relatively fewer maize lipid metabolic genic male-sterility (GMS) genes have been identified, and the sporopollenin metabolon in maize anther remains unknown. Here, we identified two maize GMS genes, ZmTKPR1-1 and ZmTKPR1-2, by CRISPR/Cas9 mutagenesis of 14 lipid metabolic genes with anther stage-specific expression patterns. Among them, tkpr1-1/-2 double mutants displayed complete male sterility with delayed tapetum degradation and abortive pollen. ZmTKPR1-1 and ZmTKPR1-2 encode tetraketide α-pyrone reductases and have catalytic activities in reducing tetraketide α-pyrone produced by ZmPKSB (polyketide synthase B). Several conserved catalytic sites (S128/130, Y164/166 and K168/170 in ZmTKPR1-1/-2) are essential for their enzymatic activities. Both ZmTKPR1-1 and ZmTKPR1-2 are directly activated by ZmMYB84, and their encoded proteins are localized in both the endoplasmic reticulum and nuclei. Based on protein structure prediction, molecular docking, site-directed mutagenesis and biochemical assays, the sporopollenin biosynthetic metabolon ZmPKSB-ZmTKPR1-1/-2 was identified to control pollen exine formation in maize anther. Although ZmTKPR1-1/-2 and ZmPKSB formed a protein complex, their mutants showed different, even opposite, defective phenotypes of anther cuticle and pollen exine. Our findings discover new maize GMS genes that can contribute to male-sterility line-assisted maize breeding and also provide new insights into the metabolon-regulated sporopollenin biosynthesis in maize anther.
脂质的生物合成和转运对植物雄性生殖至关重要。与拟南芥和水稻相比,已鉴定的玉米脂质代谢基因雄性不育(GMS)基因相对较少,玉米花药中的孢粉素代谢物仍不清楚。在这里,我们通过 CRISPR/Cas9 诱变具有花药阶段特异性表达模式的 14 个脂质代谢基因,鉴定了两个玉米 GMS 基因 ZmTKPR1-1 和 ZmTKPR1-2。其中,tkpr1-1/-2 双突变体表现出完全雄性不育,绒毡层降解延迟,花粉败育。ZmTKPR1-1 和 ZmTKPR1-2 编码四酮α-吡喃酮还原酶,具有还原 ZmPKSB(聚酮合酶 B)产生的四酮α-吡喃酮的催化活性。几个保守的催化位点(ZmTKPR1-1/-2 中的 S128/130、Y164/166 和 K168/170)对于它们的酶活性至关重要。ZmMYB84 直接激活 ZmTKPR1-1 和 ZmTKPR1-2,它们编码的蛋白质定位于内质网和细胞核中。基于蛋白质结构预测、分子对接、定点突变和生化分析,鉴定出了控制玉米花药花粉外壁形成的孢粉素生物合成代谢物 ZmPKSB-ZmTKPR1-1/-2。尽管 ZmTKPR1-1/-2 和 ZmPKSB 形成了蛋白质复合物,但它们的突变体表现出不同的,甚至相反的,花药表皮和花粉外壁的缺陷表型。我们的研究结果发现了新的玉米 GMS 基因,这些基因可以为雄性不育系辅助玉米育种做出贡献,并为玉米花药中代谢物调控的孢粉素生物合成提供新的见解。