Suppr超能文献

协调干燥时间、层厚度和干燥区域以控制干燥动力学:太阳能隧道干燥湿法羊皮纸咖啡豆(L.)的质量与安全性

Harmonizing Drying Time, Layer Thickness, and Drier Zones for Drying Kinetics: Quality and Safety of Solar Tunnel-Dried Wet-Processed Parchment Coffee ( L.).

作者信息

Abdissa Zenaba Kadir, Tola Yetenayet B, Taye Addisalem Hailu, Mohammed Hayat Hassen

机构信息

Jimma University College of Agriculture and Veterinary Medicine, Department of Postharvest Management, P.O. BOX 307, Ethiopia.

出版信息

Int J Food Sci. 2023 Sep 14;2023:6677592. doi: 10.1155/2023/6677592. eCollection 2023.

Abstract

Tunnel solar dryer is the recently used drying method for better quality and safety of parchment coffee. However, the higher variation of drying temperature and RH along the long tunnel solar dryer results in a heterogeneous environment in the tunnel, which could make parchment coffee dried at different times or with different moisture contents. This study is aimed at investigating the effect of solar tunnel dryer zones at different zones of the dryer, divided into three zones from the inlet to the exit side of the drier and drying layer thicknesses on the drying time, drying kinetics, physicochemical, sensory, and fungal growth loads of parchment coffee. Furthermore, seven mathematical models were evaluated to select the best-fitting model for a specific zone to predict drying time. Results showed that dryer zones significantly ( < 0.05) interacted with layer thickness for most of the measured parameters except titratable acidity and sensory properties. The dryer zone, coupled with the reduction in drying layer thickness, caused an increase in effective diffusivity and moisture removal rate and reduced drying time. The drying time to reach constant moisture content varied from 14 to 17 hours. Overall raw bean, cup, and total quality varied from 36.3 to 37, 48 to 51, and 84.3 to 87.3%, respectively. Values for physicochemical parameters ranged from 5.3 to 6.9 (pH), 2.1 to 2.6% (titratable acidity), 2.3 to 4.3°Brix TSS, 10.9 to 15.2% (ether extract), 39.2 to 53.5GAE/g (total phenolic content), and 38.5 to 59.2 (DPPH scavenging capacity). The fungal infection percentage at the end of drying varied from 4 to 93.3%, which could be associated with potential mycotoxin formation if recommended conditions were not maintained. In general, for better quality, similar drying times, and a lesser fungal load, it is recommended to use 4, 5, and 6 cm layer thickness in zones one, two, and three, respectively. The drying kinetics of parchment coffee in different dryer zones with different drying layer thicknesses showed variation. Zone one at 2 and 4 cm layer thicknesses is best described by the Verma model. Four- and six-centimetre layer thicknesses in zones 2 and 3 are best described by the modified Midilli model.

摘要

隧道式太阳能干燥机是最近用于提高羊皮纸咖啡豆品质和安全性的干燥方法。然而,沿着长隧道式太阳能干燥机,干燥温度和相对湿度的变化较大,导致隧道内环境不均一,这可能使羊皮纸咖啡豆在不同时间或具有不同含水量的情况下进行干燥。本研究旨在调查干燥机不同区域(从干燥机入口到出口分为三个区域)的太阳能隧道干燥区域以及干燥层厚度对羊皮纸咖啡豆干燥时间、干燥动力学、理化性质、感官特性和真菌生长负荷的影响。此外,评估了七个数学模型,以选择最适合特定区域的模型来预测干燥时间。结果表明,除了可滴定酸度和感官特性外,对于大多数测量参数,干燥区域与层厚度之间存在显著的(<0.05)相互作用。干燥区域加上干燥层厚度的减小,导致有效扩散率和水分去除率增加,干燥时间缩短。达到恒定水分含量的干燥时间为14至17小时。总体而言,生豆、杯测和总品质分别在36.3%至37%、48%至51%和84.3%至87.3%之间变化。理化参数值范围为5.3至6.9(pH值)、2.1%至2.6%(可滴定酸度)、2.3至4.3°Brix总可溶性固形物、10.9%至15.2%(乙醚提取物)、39.2至53.5GAE/g(总酚含量)和38.5至59.2(DPPH清除能力)。干燥结束时的真菌感染率在4%至93.3%之间,若未维持推荐条件,这可能与潜在的霉菌毒素形成有关。一般来说,为了获得更好的品质、相似的干燥时间和较低的真菌负荷,建议在第一、第二和第三区域分别使用4厘米、5厘米和6厘米的层厚度。不同干燥区域、不同干燥层厚度下羊皮纸咖啡豆的干燥动力学表现出差异。第一区域2厘米和4厘米层厚度的情况最好用Verma模型描述。第二和第三区域4厘米和6厘米层厚度的情况最好用修正的Midilli模型描述。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e057/10547575/c5229384e19c/IJFS2023-6677592.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验