Department of Biological Sciences, Vanderbilt University , Nashville, Tennessee, USA.
Biodesign Center for Mechanisms of Evolution, Arizona State University , Tempe, Arizona, USA.
mBio. 2023 Oct 31;14(5):e0128923. doi: 10.1128/mbio.01289-23. Epub 2023 Oct 5.
Methylation greatly influences the bacterial genome by guiding DNA repair and regulating pathogenic and stress-response phenotypes. But, the rate of epigenetic changes and their consequences on molecular phenotypes are underexplored. Through a detailed characterization of genome-wide adenine methylation in a commonly used laboratory strain of , we reveal that mismatch repair deficient populations experience an increase in epimutations resulting in a genome-wide reduction of 6mA methylation in a manner consistent with genetic drift. Our findings highlight how methylation patterns evolve and the constraints on epigenetic evolution due to post-replicative DNA repair, contributing to a deeper understanding of bacterial genome evolution and how epimutations may introduce semi-permanent variation that can influence adaptation.
甲基化通过指导 DNA 修复和调节致病和应激反应表型,极大地影响细菌基因组。但是,表观遗传变化的速度及其对分子表型的影响仍未得到充分探索。通过对常用实验室菌株中腺嘌呤甲基化的全基因组进行详细表征,我们揭示了错配修复缺陷群体经历了表观突变的增加,导致 6mA 甲基化在全基因组范围内降低,这种方式与遗传漂变一致。我们的研究结果强调了甲基化模式如何演变,以及由于复制后 DNA 修复导致的表观遗传进化的限制,这有助于更深入地了解细菌基因组进化以及表观突变如何引入可能影响适应的半永久性变异。