Xia Shuixin, Li Fengguang, Zhang Xun, Luo Lingli, Zhang Yue, Yuan Tao, Pang Yuepeng, Yang Junhe, Liu Wei, Guo Zaiping, Zheng Shiyou
School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
School of Chemical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia.
ACS Nano. 2023 Oct 24;17(20):20689-20698. doi: 10.1021/acsnano.3c08864. Epub 2023 Oct 5.
The successful substitution of Li metal for the conventional intercalation anode can promote a significant increase in the cell energy density. However, the practical application of the Li metal anode has long been fettered by the unstable solid electrolyte interface (SEI) layer on the Li metal surface and notorious dendritic Li growth. Herein, a stabilized SEI layer with in situ constructed fast ion transport channels has successfully been achieved by a robust InS-cemented poly(vinyl alcohol) coating. The modified Li metal demonstrates significantly enhanced Coulombic efficiency, high rate performance (10 mA cm), and ultralong life cycling stability (∼4900 cycles). The Li|LiCoO (LCO) cell presents an ultralong-term stable operation over 500 cycles at 1 C with an extremely low capacity decay rate (∼0.018% per cycle). And the Li|LCO full cell with the ultrahigh loading cathode (∼25 mg cm) and ultrathin Li foil (∼40 μm) also reveals a prolonged cycling performance under the low negative-to-positive capacity ratio of 2.2. Furthermore, the Li|LCO pouch cell with a commercial cathode and ultrathin Li foil still manifests excellent cycling performance even under the harsh conditions of limited Li metal and lean electrolyte. This work provides a cost-effective and scalable strategy toward high performance practical Li metal batteries.
用锂金属替代传统的插层阳极能够显著提高电池的能量密度。然而,锂金属阳极的实际应用长期以来一直受到锂金属表面不稳定的固体电解质界面(SEI)层以及众所周知的锂枝晶生长的束缚。在此,通过一种坚固的硫化铟粘结聚乙烯醇涂层成功实现了具有原位构建快速离子传输通道的稳定SEI层。改性后的锂金属表现出显著提高的库仑效率、高倍率性能(10 mA cm)和超长的循环寿命稳定性(约4900次循环)。锂|锂钴氧化物(LCO)电池在1 C下经过500次循环呈现出超长的稳定运行,容量衰减率极低(约每循环0.018%)。并且具有超高负载阴极(约25 mg cm)和超薄锂箔(约40 μm)的锂|LCO全电池在2.2的低负正容量比下也显示出延长的循环性能。此外,具有商业阴极和超薄锂箔的锂|LCO软包电池即使在锂金属有限和贫电解质的苛刻条件下仍表现出优异的循环性能。这项工作为高性能实用锂金属电池提供了一种经济高效且可扩展的策略。