Suppr超能文献

磷烯-四硫富瓦烯纳米器件热电输运性质的界面设计

Interface design of the thermoelectric transport properties of phosphorene-tetrathiafulvalene nanoscale devices.

作者信息

Qiu Yifeng, Zhang Bei

机构信息

Xinjiang Key Laboratory of Solid State Physics and Device, Xinjiang University, Urumqi, Xinjiang 830046, China.

School of Physical Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.

出版信息

Phys Chem Chem Phys. 2023 Oct 18;25(40):27448-27456. doi: 10.1039/d3cp03120a.

Abstract

Interface design and energy band engineering are two key strategies for improving the thermoelectric conversion efficiency of low dimensional nanoscale devices. By using first-principle-based density functional theory combined with a non-equilibrium Green function method, the thermoelectric properties of a single tetrathiafulvalene (TTF) molecule coupled with armchair phosphorene nanoribbons (APNRs) within different interface modes have been investigated. The results indicate that phonon transport can be dramatically suppressed in this intermediate weak-coupling system due to strong interfacial phonon scattering behavior, where very few phonons can propagate through two nonbonded interface regions from left side lead to a TTF molecule and then to right side lead. Furthermore, connecting a thiophene group at both the head and tail of the intermediate TTF molecule can significantly enhance the power factor () of such a weak-coupling system based on an out-of-plane electronic transmission mechanism, and there is obvious charge transfer from S atoms to upper and lower APNRs. Compared to a single regular method, composite interface co-design can achieve more accurate control of thermal/electrical transmission performance. Electrical conductance can be effectively improved with low phonon thermal conductance being maintained at the same time, and an excellent thermoelectric figure of merit () of 0.73 has been obtained near 0.6 eV.

摘要

界面设计和能带工程是提高低维纳米器件热电转换效率的两种关键策略。通过基于第一性原理的密度泛函理论结合非平衡格林函数方法,研究了单个四硫富瓦烯(TTF)分子与不同界面模式下的扶手椅型磷烯纳米带(APNRs)耦合时的热电性质。结果表明,由于强烈的界面声子散射行为,在这种中间弱耦合系统中声子输运可被显著抑制,其中很少有声子能从左侧电极穿过两个非键合界面区域到达TTF分子,再到达右侧电极。此外,在中间TTF分子的头部和尾部都连接一个噻吩基团,基于面外电子传输机制可显著提高这种弱耦合系统的功率因子(),并且存在从S原子到上下APNRs的明显电荷转移。与单一常规方法相比,复合界面协同设计能够更精确地控制热/电传输性能。在保持低声子热导的同时可有效提高电导率,并且在0.6 eV附近获得了0.73的优异热电优值()。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验