Schmid Dario, Li Tian-Ren, Goldfuss Bernd, Tiefenbacher Konrad
Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland.
Institut für Organische Chemie, Universität zu Köln, Greinstrasse 4, 50939 Köln, Germany.
J Org Chem. 2023 Oct 20;88(20):14515-14526. doi: 10.1021/acs.joc.3c01547. Epub 2023 Oct 5.
In the past decade, there has been an increased interest in applying supramolecular capsule and cage catalysis to the current challenges in synthetic organic chemistry. In this context, we recently reported the resorcin[4]arene capsule-catalyzed conversion of α-glycosyl halides into β-glycosides with high selectivity. Interestingly, this methodology enabled the formation of a wide range of β-pyranosides as well as β-furanosides, although these two donor classes exhibit different reactivities and usually require different reaction conditions and catalysts. Evidence was provided that a proton wire plays a key role in this reaction by enabling dual activation of the glycosyl donor and acceptor. Here, we describe a detailed investigation of several aspects of this reactivity. Besides a mechanistic study, we elucidated the size limitation, the origin of catalytic turnover, and the electrophile scope of nonglycosylic halides. Moreover, a screening of the sensitivity to changes in the reaction conditions provides guidelines to facilitate reproducibility. Furthermore, we demonstrate the compatibility with environmentally benign solvent alternatives, including the renewable solvent limonene.
在过去十年中,人们对将超分子胶囊和笼状催化应用于合成有机化学当前面临的挑战越来越感兴趣。在此背景下,我们最近报道了间苯二酚[4]芳烃胶囊催化α-糖基卤化物高选择性地转化为β-糖苷。有趣的是,尽管这两类供体表现出不同的反应活性,通常需要不同的反应条件和催化剂,但该方法能够形成多种β-吡喃糖苷以及β-呋喃糖苷。有证据表明,质子线通过使糖基供体和受体双重活化,在该反应中起关键作用。在此,我们描述了对该反应活性几个方面的详细研究。除了机理研究外,我们还阐明了尺寸限制、催化周转的起源以及非糖基卤化物的亲电试剂范围。此外,对反应条件变化敏感性的筛选提供了有助于重现性的指导原则。此外,我们证明了与环境友好型溶剂替代品的兼容性,包括可再生溶剂柠檬烯。