Faculty of Biology, University of Duisburg Essen, Essen 45141, Germany.
J Phys Chem B. 2023 Oct 19;127(41):8842-8851. doi: 10.1021/acs.jpcb.3c04788. Epub 2023 Oct 5.
Plant viruses are highly destructive and significant contributors to several global pandemics and epidemics in plants. A viral disease outbreak in plants can cause a scarcity of food supply and is a severe concern to humanity. The siRNA (small interfering RNA)-mediated RNA-induced silencing complex (RISC) formation is a primary defense mechanism in plants against viruses, where the RISC binds and degrades viral mRNAs. As a counter-defense, many viruses encode RNA-silencing suppressor proteins (e.g., the p19 protein from the family) for viral proliferation in plants. The functional form of p19 (homodimer) binds to plant siRNA with high affinities, thereby interrupting the RISC formation and thus preventing the viral mRNA silencing in plants. By altering the RISC formation, the p19 protein helps the virus invasion in the plant and ultimately stunts host growth. In this study, we designed several modified siRNA-based molecules for p19 inhibition. The viral p19 protein is known to interact predominantly through H-bonds with 2'-OH and phosphates of the plant siRNA. We utilized this information and in silico-designed flexible substituents of siRNA, where we removed the C2'-C3' bond in each nucleotide unit. We performed all-atom explicit-solvent molecular dynamics simulations (400 ns, 3 replicates each) for control/modified siRNA─p19 complexes (8 in total) followed by energetic estimations. Strikingly, in a few modified complexes, the siRNA not only retained the double-helical structural integrity but also displayed remarkably enhanced p19 binding compared to the control siRNA; hence, we consider it important to perform biological and chemical in vitro and in vivo studies on proposed flexible nucleic acids as p19 inhibitors for crop protection.
植物病毒具有很强的破坏性,是导致全球几次植物大流行和流行病的重要因素。植物病毒病的爆发会导致粮食供应短缺,这是人类面临的严重问题。小干扰 RNA(siRNA)介导的 RNA 诱导沉默复合物(RISC)的形成是植物抵御病毒的主要防御机制,其中 RISC 结合并降解病毒 mRNA。作为一种反防御机制,许多病毒编码 RNA 沉默抑制蛋白(例如,家族中的 p19 蛋白)以促进病毒在植物中的增殖。p19 的功能形式(同源二聚体)与植物 siRNA 具有高亲和力结合,从而中断 RISC 的形成,从而防止植物中病毒 mRNA 的沉默。通过改变 RISC 的形成,p19 蛋白有助于病毒在植物中的入侵,并最终阻碍宿主的生长。在这项研究中,我们设计了几种基于 siRNA 的修饰分子来抑制 p19。已知病毒 p19 蛋白主要通过氢键与植物 siRNA 的 2'-OH 和磷酸基团相互作用。我们利用了这一信息,并在计算机上设计了 siRNA 的柔性取代物,其中我们去除了每个核苷酸单元的 C2'-C3'键。我们对对照/修饰的 siRNA-p19 复合物(共 8 个)进行了全原子显式溶剂分子动力学模拟(400 ns,每个重复 3 次),然后进行了能量估计。引人注目的是,在一些修饰的复合物中,siRNA 不仅保留了双链结构的完整性,而且与对照 siRNA 相比,p19 的结合能力显著增强;因此,我们认为有必要对所提出的柔性核酸进行生物和化学的体外和体内研究,作为作物保护的 p19 抑制剂。