Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India.
Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India.
J Mol Graph Model. 2024 Jan;126:108642. doi: 10.1016/j.jmgm.2023.108642. Epub 2023 Sep 28.
Hepatocellular carcinoma (HCC) is one of the most aggressive and life-threatening cancers. Although multiple treatment options are available, the prognosis of HCC patients is poor due to metastasis and drug resistance. Hence, discovering novel targets is essential for better therapeutic development for HCC. In this study, we used the cancer genome atlas (TCGA) dataset to analyze the expression of bromodomain-containing proteins in HCC, as bromodomains are emerging attractive therapeutic targets. Our analysis identified BRPF1 as the most highly upregulated gene in HCC among the 43 bromodomain-containing genes. Upregulation of BRPF1 was significantly associated with poorer patient survival. Therefore, targeting BRPF1 may be an approach for HCC treatment. Previously, several potential inhibitors of BRPF1 bromodomain have been discovered. However, due to the limited clinical success of the current inhibitors, we aim to search for new inhibitors with high affinity and specificity for the BRPF1 bromodomain. In this study, we utilized high-throughput virtual screening methods to screen synthetic and natural compound databases against the BRPF1 bromodomain. In addition, we used machine learning-based QSAR modeling to predict the IC50 values of the selected BRPF1 bromodomain inhibitors. Extensive MD simulations were used to calculate the binding free energies of BRPF1 bromodomain and inhibitor complexes. Using this approach, we identified four lead scaffolds with a similar or better binding affinity towards the BRPF1 bromodomain than the previously reported inhibitors. Overall, this study discovered some promising compounds that have the potential to act as potent BRPF1 bromodomain inhibitors.
肝细胞癌(HCC)是最具侵袭性和致命性的癌症之一。尽管有多种治疗选择,但由于转移和耐药性,HCC 患者的预后仍然很差。因此,发现新的靶点对于 HCC 的治疗发展至关重要。在这项研究中,我们使用癌症基因组图谱(TCGA)数据集分析了 HCC 中含溴结构域蛋白的表达,因为溴结构域是新兴的有吸引力的治疗靶点。我们的分析确定 BRPF1 是 43 个含溴结构域基因中在 HCC 中上调最明显的基因。BRPF1 的上调与患者生存率显著降低相关。因此,靶向 BRPF1 可能是 HCC 治疗的一种方法。以前已经发现了几种 BRPF1 溴结构域的潜在抑制剂。然而,由于当前抑制剂的临床效果有限,我们旨在寻找对 BRPF1 溴结构域具有高亲和力和特异性的新型抑制剂。在这项研究中,我们利用高通量虚拟筛选方法对 BRPF1 溴结构域进行了合成和天然化合物数据库的筛选。此外,我们还使用基于机器学习的 QSAR 建模来预测所选 BRPF1 溴结构域抑制剂的 IC50 值。我们使用广泛的 MD 模拟来计算 BRPF1 溴结构域和抑制剂复合物的结合自由能。通过这种方法,我们鉴定了四个具有与先前报道的抑制剂相似或更好的结合亲和力的先导骨架,它们对 BRPF1 溴结构域具有潜在的作用。总的来说,这项研究发现了一些有前途的化合物,它们有可能成为有效的 BRPF1 溴结构域抑制剂。