Zhao Lei, Huang Zhaohui, Zeng Xianghui, He Xuan, Wang Daheng, Fang Wei, Li Weixin, Du Xing, Chen Hui
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan 430081, PR China.
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan 430081, PR China.
J Colloid Interface Sci. 2024 Jan;653(Pt B):1236-1245. doi: 10.1016/j.jcis.2023.09.165. Epub 2023 Sep 30.
Interfacial charge transfer resistance is one of the main limiting factors for realizing high photocatalytic efficiency of heterostructures system. Herein, an activated carbon layer is successfully introduced between the interface of polymer carbon nitride (CN) and TiO heterostructure (CNP-x) as charge transfer medium by in situ pyrolysis carbonization method. Because of the lower spatial resistance of the crystalline/amorphous interface and the fast carrier transportation character of activated carbon, the efficiency of TiO in extracting photoinduced electrons from CN was significantly improved. That is, the separation/transport of photocarriers in CNP-x heterostructure is accelerated, and the recombination time of photogenerated electrons and holes is prolonged. The CNP-1 exhibits a H evolution rate of 1298.5 μmol h with apparent quantum yield (AQY) of 34.5 %, 20.3 % and 12.6 % at 365 nm, 380 nm and 400 nm, respectively. This work offers a novel and unique strategy to promote interface charge separation and transport of CN-based heterostructures by accurately introduction charge transfer medium.
界面电荷转移电阻是实现异质结构体系高光催化效率的主要限制因素之一。在此,通过原位热解碳化法成功地在聚合物氮化碳(CN)与TiO异质结构(CNP-x)的界面之间引入了一层活性炭层作为电荷转移介质。由于晶态/非晶态界面的空间电阻较低以及活性炭的快速载流子传输特性,TiO从CN中提取光生电子的效率得到了显著提高。也就是说,加速了CNP-x异质结构中光载流子的分离/传输,并延长了光生电子和空穴的复合时间。CNP-1在365nm、380nm和400nm处的析氢速率分别为1298.5μmol h,表观量子产率(AQY)分别为34.5%、20.3%和12.6%。这项工作通过精确引入电荷转移介质,为促进CN基异质结构的界面电荷分离和传输提供了一种新颖独特的策略。