Singh Rajendra V, Pai Mrinal R, Banerjee Atindra M, Shrivastava Anshu, Kumar Uttam, Sinha Indrajit, Dutta Bijaideep, Hassan Puthusserickal A, Ningthoujam Raghumani S, Ghosh Rajib, Nath Sukhendu, Sharma Rajendra K, Bapat Rudheer D
Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400085, India.
ACS Omega. 2024 Sep 9;9(38):40182-40203. doi: 10.1021/acsomega.4c06353. eCollection 2024 Sep 24.
The present study discloses the fabrication of efficient p-n heterojunctions using n-type polymeric bulk carbon nitride (b-CN, = 2.7 eV) or exfoliated nanosheets of carbon nitride (NSCN, = 2.9 eV) with p-type spinel ferrite CaFeO (CFO, = 1.9 eV) for photocatalytic hydrogen generation. A series of p-n combinations were fabricated and characterized by various techniques. The oxide-carbon nitride interactions, light absorption, band alignment at the interface, and water/HO adsorption capability were elucidated over heterojunctions and correlated with the photocatalytic hydrogen yield. The main developments in the present study are as follows: (1) All heterojunctions were more active than pure phases. (2) The photocatalytic activity trend validated an increase in the lifetime of charge carriers from TRPL. Pt(1 wt %)-CFO(1 wt %)/NSCN (481.5 μmol/h/g under ultraviolet (UV)-visible-simulated light, 147.5 μmol/h/g under CFL illumination for 20 h, τ = 10.33 ns) > Pt-NSCN > Pt-CFO/b-CN > CFO/NSCN > CFO/b-CN > NSCN > Pt/b-CN > mechanical mixture (MM) of 1 wt %CFO + NSCN-MM > 1 wt %CFO + b-CN-MM > CFO > b-CN (τ = 4.5 ns). (3) Pt-CFO/NSCN was most active and exhibited 250 times enhanced photocatalytic activity as compared to parent bulk carbon nitride, 6.5 times more active than CFO/NSCN, and twice more active than Pt-NSCN. Thus, enhanced activity is attributed to the smooth channelizing of electrons across p-n junctions. (4) NSCN evidently offered improved characteristics as a support and photocatalyst over b-CN. The exfoliated NSCN occupied a superior few-layer morphology with 0.35 nm width as compared to parent b-CN. NSCN allowed 57% dispersion of 6 nm-sized CFO, while b-CN supported 14% dispersion of 7.8 nm-sized CFO particles, as revealed by small-angle X-ray scattering spectroscopy (SAXS). Sizes of 2-4 nm were observed for Pt nanoparticles in the 1 wt %Pt/1 wt % CFO/NSCN sample. A binding energy shift and an increase in the FWHM of X-ray photoelectron spectroscopy (XPS) core level peaks established charge transfer and enhanced band bending on p-n contact in Pt-CFO/NSCN. FsTAS revealed the decay of photogenerated electrons via trapping in shallow traps (τ τ) and deep traps (τ). Lifetimes τ (3.19 ps, 42%) and τ (187 ps, 31%) were higher in NSCN than those in b-CN (τ = 2.2 ps, 42%, τ = 30 ps, 31%), which verified that the recombination reaction rate was suppressed by 6 times in NSCN ( = 0.53 × 10 s) as compared to b-CN ( = 3.33 × 10 s). Deep traps lie below the H/H reduction potential; thus, electrons in deep traps are not available for photocatalytic H generation. (5) The role of CFO in enhancing water adsorption capability was modeled by molecular dynamics. NSCN or b-CN both showed very poor interaction with water molecules; however, the CFO cluster adsorbed HO ions very strongly through the electrostatic interaction between calcium and oxygen (of HO). Pt also showed a strong affinity for HO but not for HO. Thus, both CFO and Pt facilitated NSCN to access water molecules, and CFO further sustained the adsorption of HO molecules, crucial for the photocatalytic reduction of water molecules. (6) Band potentials of CFO and NSCN aligned suitably at the interface of CFO/NSCN, resulting in a type-II band structure. Valence band offset (VBO, Δ ) and conduction band offset (CBO, Δ ) were calculated at the interface, resulting in an effective band gap of 1.41 eV (2.9 - Δ = 1.9 - Δ ), much lower than parent compounds. The interfacial band structure was efficient in driving photogenerated electrons from the CB of CFO to the CB of NSCN and holes from the VB of NSCN to the VB of CFO, thus successfully separating charge carriers, as supported by the increased lifetime of charge carriers and favorable photocatalytic H yield.
本研究揭示了使用n型聚合体块状氮化碳(b-CN, = 2.7 eV)或氮化碳剥离纳米片(NSCN, = 2.9 eV)与p型尖晶石铁氧体CaFeO(CFO, = 1.9 eV)制备用于光催化产氢的高效p-n异质结。制备了一系列p-n组合,并通过各种技术对其进行表征。阐明了异质结上的氧化物-氮化碳相互作用、光吸收、界面处的能带排列以及水/HO吸附能力,并将其与光催化产氢量相关联。本研究的主要进展如下:(1)所有异质结均比纯相更具活性。(2)光催化活性趋势证实了通过时间分辨光致发光(TRPL)得到的载流子寿命增加。Pt(1 wt %)-CFO(1 wt %)/NSCN(在紫外(UV)-可见模拟光下为481.5 μmol/h/g,在紧凑型荧光灯(CFL)照射20 h下为147.5 μmol/h/g,τ = 10.33 ns)> Pt-NSCN > Pt-CFO/b-CN > CFO/NSCN > CFO/b-CN > NSCN > Pt/b-CN > 1 wt %CFO + NSCN的机械混合物(MM)> 1 wt %CFO + b-CN的机械混合物> CFO > b-CN(τ = 4.5 ns)。(3)Pt-CFO/NSCN活性最高,与母体块状氮化碳相比,其光催化活性提高了250倍,比CFO/NSCN活性高6.5倍,比Pt-NSCN活性高两倍。因此,活性增强归因于电子在p-n结处的顺畅传导。(4)与b-CN相比,NSCN显然作为载体和光催化剂具有更好的特性。与母体b-CN相比,剥离的NSCN呈现出宽度为0.35 nm的优异少层形态。小角X射线散射光谱(SAXS)显示,NSCN允许6 nm尺寸的CFO有57%的分散,而b-CN支持7.8 nm尺寸的CFO颗粒有14%的分散。在1 wt %Pt/1 wt % CFO/NSCN样品中观察到Pt纳米颗粒的尺寸为2 - 4 nm。X射线光电子能谱(XPS)核心能级峰的结合能位移和半高宽(FWHM)增加,证实了Pt-CFO/NSCN中p-n接触处的电荷转移和能带弯曲增强。超快时间分辨吸收光谱(FsTAS)揭示了光生电子通过捕获在浅陷阱(τ τ)和深陷阱(τ)中的衰减。NSCN中的寿命τ(3.19 ps,42%)和τ(187 ps,31%)高于b-CN中的(τ = 2.2 ps,42%,τ = 30 ps,31%),这证实了与b-CN( = 3.33 × 10 s)相比,NSCN中的复合反应速率被抑制了6倍( = 0.53 × 10 s)。深陷阱位于H/H还原电位以下;因此,深陷阱中的电子不可用于光催化产氢。(5)通过分子动力学模拟了CFO在增强水吸附能力方面的作用。NSCN或b-CN与水分子的相互作用都非常弱;然而,CFO簇通过钙与(HO中的)氧之间的静电相互作用非常强烈地吸附HO离子。Pt对HO也表现出很强的亲和力,但对HO没有。因此,CFO和Pt都促进了NSCN与水分子的接触,并且CFO进一步维持了HO分子的吸附,这对于水分子的光催化还原至关重要。(6)CFO和NSCN的能带电位在CFO/NSCN界面处适当对齐,形成II型能带结构。计算了界面处的价带偏移(VBO,Δ )和导带偏移(CBO,Δ ),得到有效带隙为1.41 eV(2.9 - Δ = 1.9 - Δ ),远低于母体化合物。界面能带结构有效地驱动光生电子从CFO的导带转移到NSCN的导带,以及空穴从NSCN的价带转移到CFO的价带,从而成功地分离了载流子,这由载流子寿命的增加和良好的光催化产氢量所支持。