Suppr超能文献

基于增强 CT 的无创放射组学分析预测头颈部鳞状细胞癌中 CTLA4 的表达和预后。

Noninvasive radiomic analysis of enhanced CT predicts CTLA4 expression and prognosis in head and neck squamous cell carcinoma.

机构信息

Nanjing University of Chinese Medicine, No. 282, Hanzhong Road, Nanjing, Jiangsu, China.

出版信息

Sci Rep. 2023 Oct 5;13(1):16782. doi: 10.1038/s41598-023-43582-0.

Abstract

Developing a radiomic model to predict CTLA4 expression levels and assessing its prognostic accuracy for patients. Medical imaging data were sourced from the TCIA database, while transcriptome sequencing data were derived from the TCGA database. We utilized a linear kernel SVM algorithm to develop a radiomic model for predicting CTLA4 gene expression. We then assessed the model's clinical relevance using survival and Cox regression analyses. Performance evaluations of the model were illustrated through ROC, PR, calibration, and decision curves. (1) Bioinformatics analysis: Kaplan-Meier curves indicated that increased CTLA4 expression correlates with enhanced overall survival (OS) (p < 0.001). Both univariate and multivariate analyses revealed that high CTLA4 expression served as a protective factor for OS (HR = 0.562, 95% CI 0.427-0.741, p < 0.001). (2) Radiomics evaluation: the ROC curve demonstrated that the AUC for the SVM radiomics model was 0.766 in the training set and 0.742 in the validation set. The calibration curve affirmed that the model's prediction probability for high gene expression aligns with the actual outcomes. Furthermore, decision curve analysis (DCA) indicated that our model boasts robust clinical applicability. CTLA4 expression level serves as an independent prognostic factor for HNSCCs. Using enhanced CT images, the SVM radiomic model effectively predicts CTLA4 expression levels. As a result, this model offers strong prognostic insights for HNSCCs, guiding precise diagnosis, treatment, and assisting in clinical decision-making.

摘要

开发一种放射组学模型来预测 CTLA4 表达水平,并评估其对患者的预后准确性。医学成像数据来源于 TCIA 数据库,而转录组测序数据来源于 TCGA 数据库。我们利用线性核 SVM 算法为预测 CTLA4 基因表达开发了一个放射组学模型。然后,我们使用生存和 Cox 回归分析来评估该模型的临床相关性。通过 ROC、PR、校准和决策曲线来展示模型的性能评估。(1) 生物信息学分析:Kaplan-Meier 曲线表明,CTLA4 表达增加与总生存期 (OS) 提高相关(p < 0.001)。单因素和多因素分析均表明,高 CTLA4 表达是 OS 的保护因素(HR = 0.562,95%CI 0.427-0.741,p < 0.001)。(2) 放射组学评估:ROC 曲线表明,SVM 放射组学模型在训练集中的 AUC 为 0.766,在验证集中为 0.742。校准曲线证实了该模型对高基因表达的预测概率与实际结果相符。此外,决策曲线分析(DCA)表明,我们的模型具有稳健的临床适用性。CTLA4 表达水平是 HNSCC 的独立预后因素。使用增强的 CT 图像,SVM 放射组学模型可以有效预测 CTLA4 表达水平。因此,该模型为 HNSCC 提供了强大的预后见解,有助于精确诊断、治疗和辅助临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9763/10556051/58bf2fb1eddc/41598_2023_43582_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验