Suppr超能文献

熵约束促进聚乙烯升级回收的氢解活性。

Entropy Confinement Promotes Hydrogenolysis Activity for Polyethylene Upcycling.

作者信息

Kang Qingyun, Chu Mingyu, Xu Panpan, Wang Xuchun, Wang Shiqi, Cao Muhan, Ivasenko Oleksandr, Sham Tsun-Kong, Zhang Qiao, Sun Qiming, Chen Jinxing

机构信息

Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China.

Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China.

出版信息

Angew Chem Int Ed Engl. 2023 Nov 20;62(47):e202313174. doi: 10.1002/anie.202313174. Epub 2023 Oct 19.

Abstract

Chemical upcycling that catalyzes waste plastics back to high-purity chemicals holds great promise in end-of-life plastics valorization. One of the main challenges in this process is the thermodynamic limitations imposed by the high intrinsic entropy of polymer chains, which makes their adsorption on catalysts unfavorable and the transition state unstable. Here, we overcome this challenge by inducing the catalytic reaction inside mesoporous channels, which possess a strong confined ability to polymer chains, allowing for stabilization of the transition state. This approach involves the synthesis of p-Ru/SBA catalysts, in which Ru nanoparticles are uniformly distributed within the channels of an SBA-15 support, using a precise impregnation method. The unique design of the p-Ru/SBA catalyst has demonstrated significant improvements in catalytic performance for the conversion of polyethylene into high-value liquid fuels, particularly diesel. The catalyst achieved a high solid conversion rate of 1106 g ⋅ g  ⋅ h at 230 °C. Comparatively, this catalytic activity is 4.9 times higher than that of a control catalyst, Ru/SiO , and 14.0 times higher than that of a commercial catalyst, Ru/C, at 240 °C. This remarkable catalytic activity opens up immense opportunities for the chemical upcycling of waste plastics.

摘要

将废塑料催化转化回高纯度化学品的化学升级循环在废弃塑料的增值利用方面具有巨大潜力。这一过程的主要挑战之一是聚合物链的高固有熵所带来的热力学限制,这使得它们在催化剂上的吸附不利,且过渡态不稳定。在此,我们通过在介孔通道内引发催化反应克服了这一挑战,介孔通道对聚合物链具有很强的限制能力,能够使过渡态稳定。这种方法涉及使用精确的浸渍法合成p-Ru/SBA催化剂,其中Ru纳米颗粒均匀分布在SBA-15载体的通道内。p-Ru/SBA催化剂的独特设计在将聚乙烯转化为高价值液体燃料(特别是柴油)的催化性能方面有显著提升。该催化剂在230°C下实现了1106 g·g⁻¹·h的高固体转化率。相比之下,在240°C时,这种催化活性比对照催化剂Ru/SiO₂高4.9倍,比商业催化剂Ru/C高14.0倍。这种显著的催化活性为废塑料的化学升级循环开辟了巨大机遇。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验