Hu Ping, Zhang Congyang, Chu Mingyu, Wang Xianpeng, Wang Lu, Li Youyong, Yan Tianran, Zhang Liang, Ding Zhifeng, Cao Muhan, Xu Panpan, Li Yifan, Cui Yi, Zhang Qiao, Chen Jinxing, Chi Lifeng
Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China.
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China.
J Am Chem Soc. 2024 Mar 13;146(10):7076-7087. doi: 10.1021/jacs.4c00757. Epub 2024 Mar 1.
The present polyolefin hydrogenolysis recycling cases acknowledge that zerovalent Ru exhibits high catalytic activity. A pivotal rationale behind this assertion lies in the propensity of the majority of Ru species to undergo reduction to zerovalent Ru within the hydrogenolysis milieu. Nonetheless, the suitability of zerovalent Ru as an optimal structural configuration for accommodating multiple elementary reactions remains ambiguous. Here, we have constructed stable Ru-Ru complex species, even under reaction conditions, through surface ligand engineering of commercially available Ru/C catalysts. Our findings unequivocally demonstrate that surface-ligated Ru species can be stabilized in the form of a Ru state, which, in turn, engenders a perturbation of the σ bond electron distribution within the polyolefin carbon chain, ultimately boosting the rate-determining step of C-C scission. The optimized catalysts reach a solid conversion rate of 609 g·g·h for polyethylene. This achievement represents a 4.18-fold enhancement relative to the pristine Ru/C catalyst while concurrently preserving a remarkable 94% selectivity toward valued liquid alkanes. Of utmost significance, this surface ligand engineering can be extended to the gentle mixing of catalysts in ligand solution at room temperature, thus rendering it amenable for swift integration into industrial processes involving polyolefin degradation.
目前的聚烯烃氢解回收案例表明,零价钌具有很高的催化活性。这一论断背后的一个关键原因在于,在氢解环境中,大多数钌物种倾向于还原为零价钌。然而,零价钌作为容纳多个基元反应的最佳结构构型的适用性仍不明确。在这里,我们通过对市售Ru/C催化剂进行表面配体工程,即使在反应条件下也构建了稳定的Ru-Ru络合物物种。我们的研究结果明确表明,表面连接的钌物种可以以Ru态的形式稳定下来,这反过来又会引起聚烯烃碳链内σ键电子分布的扰动,最终加快C-C断裂的速率决定步骤。优化后的催化剂对聚乙烯的固体转化率达到609 g·g⁻¹·h。这一成果相对于原始Ru/C催化剂提高了4.18倍,同时对有价值的液态烷烃仍保持着高达94%的选择性。最重要的是,这种表面配体工程可以扩展到在室温下将催化剂在配体溶液中进行温和混合,从而使其易于快速整合到涉及聚烯烃降解的工业过程中。