Suppr超能文献

通过菊石扫描扫频源光学相干断层扫描血管造影术进行可变帧间时间分析时的扩展和可调视野。

Extended and adjustable field-of-view of variable interscan time analysis by ammonite-scanning swept-source optical coherence tomography angiography.

作者信息

Mino Toshihiro, Moriguchi Yoshikiyo, Tamura Masato, Matsumoto Akiko, Kubota Atsushi, Akiba Masahiro, Hwang Yunchan, Makita Shuichi, Yasuno Yoshiaki, Enaida Hiroshi, Fujimoto James G, Wang Zhenguo

机构信息

Topcon Advanced Biomedical Imaging Laboratory, Topcon Medical Systems, 111 Bauer Drive, Oakland, NJ 07436, USA.

Research & Development Division, Topcon Corporation, 75-1 Hasunuma-cho, Itabashi-ku, Tokyo 174-8580, Japan.

出版信息

Biomed Opt Express. 2023 Jul 14;14(8):4112-4125. doi: 10.1364/BOE.491611. eCollection 2023 Aug 1.

Abstract

A novel scanning protocol, ammonite scan, is proposed for widefield optical coherence tomography angiography (OCTA) and relative retinal blood flow velocity imaging in the human retina using variable interscan time analysis (VISTA). A repeated circle scan using a 400 kHz swept-source was employed to achieve an interscan time of 1.28 ms. The center of the repeated circular scan continuously moved spirally towards the peripheral region, ensuring an extended and adjustable scan range while preserving the short interscan time. Image artifacts due to eye movement were eliminated via extra motion-correction processing using data redundancy. The relative blood flow velocity in superficial and deep plexus layers was calculated from the VISTA image, and their ratio was used to explore the microvascular flow parameter in the healthy human eye.

摘要

一种新的扫描协议——菊石扫描被提出,用于宽场光学相干断层扫描血管造影(OCTA)以及使用可变扫描间隔时间分析(VISTA)对人视网膜进行相对视网膜血流速度成像。采用400kHz扫频光源进行重复圆周扫描,以实现1.28 ms的扫描间隔时间。重复圆周扫描的中心持续螺旋式地向周边区域移动,在保持短扫描间隔时间的同时确保扫描范围可扩展且可调。通过使用数据冗余的额外运动校正处理消除了因眼球运动产生的图像伪影。从VISTA图像计算浅表和深部神经丛层的相对血流速度,并利用它们的比值来探究健康人眼的微血管血流参数。

相似文献

2
Effect of A-scan rate and interscan interval on optical coherence angiography.
Biomed Opt Express. 2021 Jan 6;12(2):722-736. doi: 10.1364/BOE.409636. eCollection 2021 Feb 1.
6
Retinal blood flow speed quantification at the capillary level using temporal autocorrelation fitting OCTA [Invited].
Biomed Opt Express. 2023 May 16;14(6):2658-2677. doi: 10.1364/BOE.488103. eCollection 2023 Jun 1.
7
Analyzing Relative Blood Flow Speeds in Choroidal Neovascularization Using Variable Interscan Time Analysis OCT Angiography.
Ophthalmol Retina. 2018 Apr;2(4):306-319. doi: 10.1016/j.oret.2017.08.013. Epub 2017 Oct 31.
8
Extended axial imaging range, widefield swept source optical coherence tomography angiography.
J Biophotonics. 2017 Nov;10(11):1464-1472. doi: 10.1002/jbio.201600325. Epub 2017 May 11.
9
Longer Interscan Times in OCT Angiography Detect Slower Capillary Flow in Diabetic Retinopathy.
Ophthalmol Sci. 2022 Jun 13;2(3):100181. doi: 10.1016/j.xops.2022.100181. eCollection 2022 Sep.
10
Optical coherence tomography angiography (OCTA) flow speed mapping technology for retinal diseases.
Expert Rev Med Devices. 2018 Dec;15(12):875-882. doi: 10.1080/17434440.2018.1548932. Epub 2018 Nov 22.

引用本文的文献

1
Monte Carlo-based realistic simulation of optical coherence tomography angiography.
Biomed Opt Express. 2024 Dec 11;16(1):142-158. doi: 10.1364/BOE.540916. eCollection 2025 Jan 1.
3
Megahertz multi-parametric ophthalmic OCT system for whole eye imaging.
Biomed Opt Express. 2024 Apr 11;15(5):3000-3017. doi: 10.1364/BOE.517757. eCollection 2024 May 1.
4
30 Years of Optical Coherence Tomography: introduction to the feature issue.
Biomed Opt Express. 2023 Sep 26;14(10):5484-5487. doi: 10.1364/BOE.505569. eCollection 2023 Oct 1.

本文引用的文献

1
Retinal blood flow speed quantification at the capillary level using temporal autocorrelation fitting OCTA [Invited].
Biomed Opt Express. 2023 May 16;14(6):2658-2677. doi: 10.1364/BOE.488103. eCollection 2023 Jun 1.
2
Extending field-of-view of retinal imaging by optical coherence tomography using convolutional Lissajous and slow scan patterns.
Biomed Opt Express. 2022 Sep 9;13(10):5212-5230. doi: 10.1364/BOE.467563. eCollection 2022 Oct 1.
3
Longer Interscan Times in OCT Angiography Detect Slower Capillary Flow in Diabetic Retinopathy.
Ophthalmol Sci. 2022 Jun 13;2(3):100181. doi: 10.1016/j.xops.2022.100181. eCollection 2022 Sep.
5
Towards standardizing retinal optical coherence tomography angiography: a review.
Light Sci Appl. 2022 Mar 18;11(1):63. doi: 10.1038/s41377-022-00740-9.
6
Modeling and optimization of galvanometric point-scanning temporal dynamics.
Biomed Opt Express. 2021 Oct 5;12(11):6701-6716. doi: 10.1364/BOE.430586. eCollection 2021 Nov 1.
7
105° field of view non-contact handheld swept-source optical coherence tomography.
Opt Lett. 2021 Dec 1;46(23):5878-5881. doi: 10.1364/OL.443672.
9
Accurately motion-corrected Lissajous OCT with multi-type image registration.
Biomed Opt Express. 2020 Dec 24;12(1):637-653. doi: 10.1364/BOE.409004. eCollection 2021 Jan 1.
10
Analyzing Relative Flow Speeds in Diabetic Retinopathy Using Variable Interscan Time Analysis OCT Angiography.
Ophthalmol Retina. 2021 Jan;5(1):49-59. doi: 10.1016/j.oret.2020.06.024. Epub 2020 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验