Suppr超能文献

扩展轴向成像范围,宽视野扫频源光学相干断层扫描血管造影术

Extended axial imaging range, widefield swept source optical coherence tomography angiography.

作者信息

Liu Gangjun, Yang Jianlong, Wang Jie, Li Yan, Zang Pengxiao, Jia Yali, Huang David

机构信息

Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA.

出版信息

J Biophotonics. 2017 Nov;10(11):1464-1472. doi: 10.1002/jbio.201600325. Epub 2017 May 11.

Abstract

We developed a high-speed, swept source OCT system for widefield OCT angiography (OCTA) imaging. The system has an extended axial imaging range of 6.6 mm. An electrical lens is used for fast, automatic focusing. The recently developed split-spectrum amplitude and phase-gradient angiography allow high-resolution OCTA imaging with only two B-scan repetitions. An improved post-processing algorithm effectively removed trigger jitter artifacts and reduced noise in the flow signal. We demonstrated high contrast 3 mm×3 mm OCTA image with 400×400 pixels acquired in 3 seconds and high-definition 8 mm×6 mm and 12 mm×6 mm OCTA images with 850×400 pixels obtained in 4 seconds. A widefield 8 mm×11 mm OCTA image is produced by montaging two 8 mm×6 mm scans. An ultra-widefield (with a maximum of 22 mm along both vertical and horizontal directions) capillary-resolution OCTA image is obtained by montaging six 12 mm×6 mm scans.

摘要

我们开发了一种用于广角光学相干断层扫描血管造影(OCTA)成像的高速扫频光学相干断层扫描(OCT)系统。该系统具有6.6 mm的扩展轴向成像范围。使用电透镜进行快速自动聚焦。最近开发的分裂谱幅度和相位梯度血管造影技术仅需两次B扫描重复即可实现高分辨率OCTA成像。一种改进的后处理算法有效去除了触发抖动伪影并降低了血流信号中的噪声。我们展示了在3秒内采集的400×400像素、对比度高的3 mm×3 mm OCTA图像,以及在4秒内获得的850×400像素、高清的8 mm×6 mm和12 mm×6 mm OCTA图像。通过拼接两次8 mm×6 mm扫描生成8 mm×11 mm的广角OCTA图像。通过拼接六次12 mm×6 mm扫描获得超广角(垂直和水平方向最大为22 mm)毛细血管分辨率OCTA图像。

相似文献

1
Extended axial imaging range, widefield swept source optical coherence tomography angiography.
J Biophotonics. 2017 Nov;10(11):1464-1472. doi: 10.1002/jbio.201600325. Epub 2017 May 11.
2
Swept-Source Optical Coherence Tomography Angio™ (Topcon Corp, Japan): Technology Review.
Dev Ophthalmol. 2016;56:13-7. doi: 10.1159/000442771. Epub 2016 Mar 15.
6
Differential standard deviation of log-scale intensity based optical coherence tomography angiography.
J Biophotonics. 2017 Dec;10(12):1597-1606. doi: 10.1002/jbio.201600264. Epub 2017 Jan 30.
7
Extended field imaging using swept-source optical coherence tomography angiography in retinal vein occlusion.
Jpn J Ophthalmol. 2018 May;62(3):274-279. doi: 10.1007/s10384-018-0590-9. Epub 2018 Mar 28.
8
Compressive-sensing swept-source optical coherence tomography angiography with reduced noise.
J Biophotonics. 2022 Aug;15(8):e202200087. doi: 10.1002/jbio.202200087. Epub 2022 May 22.
9
Robust numerical phase stabilization for long-range swept-source optical coherence tomography.
J Biophotonics. 2017 Nov;10(11):1398-1410. doi: 10.1002/jbio.201700034. Epub 2017 May 9.

引用本文的文献

1
Adaptive contour-tracking to aid wide-field swept-source optical coherence tomography imaging of large objects with uneven surface topology.
Biomed Opt Express. 2024 Jul 29;15(8):4891-4908. doi: 10.1364/BOE.533399. eCollection 2024 Aug 1.
2
Case report: Characterizing of free-floating pigmented vitreous cyst using swept-source optical coherence tomography.
Front Med (Lausanne). 2024 Aug 30;11:1428353. doi: 10.3389/fmed.2024.1428353. eCollection 2024.
3
Choroidal and Retinal Vascular Findings in Patients with COVID-19 Complicated with Pneumonia: Widefield Imaging.
Diagnostics (Basel). 2023 Mar 15;13(6):1114. doi: 10.3390/diagnostics13061114.
4
Peripapillary and macular microvasculature features of non-arteritic anterior ischemic optic neuropathy.
Front Med (Lausanne). 2023 Jan 12;9:1033838. doi: 10.3389/fmed.2022.1033838. eCollection 2022.
5
Serum microRNA Levels in Diabetes Mellitus.
Diagnostics (Basel). 2021 Feb 11;11(2):284. doi: 10.3390/diagnostics11020284.
6
Retinal choroidal vessel imaging based on multi-wavelength fundus imaging with the guidance of optical coherence tomography.
Biomed Opt Express. 2020 Aug 24;11(9):5212-5224. doi: 10.1364/BOE.397750. eCollection 2020 Sep 1.
7
A Custom-Made Semiautomatic Analysis of Retinal Nonperfusion Areas After Dexamethasone for Diabetic Macular Edema.
Transl Vis Sci Technol. 2020 Jun 11;9(7):13. doi: 10.1167/tvst.9.7.13. eCollection 2020 Jun.
8
Widefield topographical analysis of the retinal perfusion and neuroretinal thickness in healthy eyes: a pilot study.
Eye (Lond). 2020 Dec;34(12):2264-2270. doi: 10.1038/s41433-020-0804-5. Epub 2020 Feb 13.
9
Widefield Swept Source OCTA in Retinitis Pigmentosa.
Diagnostics (Basel). 2020 Jan 19;10(1):50. doi: 10.3390/diagnostics10010050.

本文引用的文献

1
Hematocrit dependence of flow signal in optical coherence tomography angiography.
Biomed Opt Express. 2017 Jan 11;8(2):776-789. doi: 10.1364/BOE.8.000776. eCollection 2017 Feb 1.
3
Split-spectrum phase-gradient optical coherence tomography angiography.
Biomed Opt Express. 2016 Jul 11;7(8):2943-54. doi: 10.1364/BOE.7.002943. eCollection 2016 Aug 1.
4
Calibration of optical coherence tomography angiography with a microfluidic chip.
J Biomed Opt. 2016 Aug 1;21(8):86015. doi: 10.1117/1.JBO.21.8.086015.
5
Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram.
Biomed Opt Express. 2016 Jun 27;7(7):2823-36. doi: 10.1364/BOE.7.002823. eCollection 2016 Jul 1.
8
Imaging the anterior eye with dynamic-focus swept-source optical coherence tomography.
J Biomed Opt. 2015;20(12):126002. doi: 10.1117/1.JBO.20.12.126002.
10
Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle.
Biomed Opt Express. 2015 Apr 2;6(5):1534-52. doi: 10.1364/BOE.6.001534. eCollection 2015 May 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验