Suppr超能文献

Thermo-activated periodate oxidation process for tetracycline degradation: Kinetics and byproducts transformation pathways.

作者信息

Lu Gonggong, Li Xiang, Li Wei, Liu Yang, Wang Ningruo, Pan Zhicheng, Zhang Guisheng, Zhang Yongli, Lai Bo

机构信息

Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China.

Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.

出版信息

J Hazard Mater. 2024 Jan 5;461:132696. doi: 10.1016/j.jhazmat.2023.132696. Epub 2023 Oct 4.

Abstract

Periodate-based advanced oxidation processes have been diffusely practiced for pollutant decontamination. However, the thermo-activation of periodate process (heat/PI), an effective water pollution removal process, has been rarely discussed, and the degradation pathway of this heat/PI system requires investigation. In this work, tetracycline antibiotics were selected as the model micropollutant for the comprehensive evaluation of the heat/PI system. The heat/PI system exhibited good performance for tetracycline (TC) remediation with temperature increases. The principal reactive oxidative species in the heat/PI system was confirmed using quenching experiments and electron paramagnetic resonance experiments. Further, the potential reactive sites in the TC were identified based on the density functional theory calculation. Based on the detection results of intermediates, there was no significant difference in byproducts generated during TC degradation under various temperatures in the heat/PI system. The Toxicity Estimation Software Tool (T.E.S.T.) method was applied to calculate the individual toxicity of the byproducts. This study contributes to a comprehensive explanation of the process of the thermal activation of periodate, and in particular, it explains the source of oxidation power, the transformation of byproducts, and the toxicity of reaction systems.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验