Suppr超能文献

研究溴化物掺入因子(BIF)以及使用机器学习预测饮用水中三卤甲烷的模型开发。

Investigating bromide incorporation factor (BIF) and model development for predicting THMs in drinking water using machine learning.

作者信息

Chowdhury Shakhawat, Sattar Karim Asif, Rahman Syed Masiur

机构信息

Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; IRC for Construction and Building Materials, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.

Research Engineer I, IRC - Smart Mobility & Logistics, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.

出版信息

Sci Total Environ. 2024 Jan 1;906:167595. doi: 10.1016/j.scitotenv.2023.167595. Epub 2023 Oct 5.

Abstract

Many disinfection byproducts (DBPs) in drinking water can pose cancer risks to humans while several DBPs including trihalomethanes are typically regulated. Although trihalomethanes are regulated, brominated fractions (bromodichloromethane, dibromochloromethane and bromoform) are more toxic to humans than the chlorinated ones (chloroform). To date, >100 models have been reported to predict DBPs. However, models to predict individual trihalomethanes are very limited, indicating the needs of such models. Various factors including natural organic matter (NOM), bromide ions (Br), disinfectants (e.g., chlorine dose), pH, temperature and reaction time affect the formation and distribution of trihalomethanes in drinking water. In this study, NOM was fractionated into four groups based on the molecular weight (MW) cutoff values and their respective contributions to dissolved organic carbon (DOC), trihalomethanes and bromide incorporation factors (BIF) were investigated. Models were developed for predicting chloroform, bromodichloromethane, dibromochloromethane, bromoform and trihalomethanes. Three machine learning techniques: Support Vector Regressor (SVR), Random Forest Regressor (RFR) and Artificial Neural Networks (ANN) were adopted for training and testing the models. The normalized BIFs were in the ranges of 0.08-0.16 and 0.07-0.15 per mg/L of DOC for pH 6.0 and 8.5 respectively. The BIFs were higher for lower pH and MW values while increase of bromide to chlorine ratios increased BIFs. The models showed excellent predictive performances in training (R = 0.889-0.998) and testing (R = 0.870-0.988) datasets. The SVR and RFR models showed the best performances with lower RMSE and MAE in most cases. These models can be used to better control different trihalomethanes in drinking water to maintain regulatory compliance, and to minimize the risks to humans.

摘要

饮用水中的许多消毒副产物(DBPs)会对人类构成癌症风险,而包括三卤甲烷在内的几种DBPs通常受到监管。尽管三卤甲烷受到监管,但溴化组分(溴二氯甲烷、二溴氯甲烷和溴仿)对人类的毒性比氯化组分(氯仿)更大。迄今为止,已有超过100种模型被报道用于预测DBPs。然而,用于预测单个三卤甲烷的模型非常有限,这表明需要此类模型。包括天然有机物(NOM)、溴离子(Br)、消毒剂(如氯剂量)、pH值、温度和反应时间等各种因素会影响饮用水中三卤甲烷的形成和分布。在本研究中,根据分子量(MW)截断值将NOM分为四组,并研究了它们对溶解有机碳(DOC)、三卤甲烷和溴掺入因子(BIF)的各自贡献。开发了用于预测氯仿、溴二氯甲烷、二溴氯甲烷、溴仿和三卤甲烷的模型。采用了三种机器学习技术:支持向量回归器(SVR)、随机森林回归器(RFR)和人工神经网络(ANN)对模型进行训练和测试。对于pH值为6.0和8.5的情况,归一化BIF分别在每毫克/升DOC为0.08 - 0.16和0.07 - 0.15的范围内。较低的pH值和MW值时BIF较高,而溴与氯比例的增加会增加BIF。这些模型在训练数据集(R = 0.889 - 0.998)和测试数据集(R = 0.870 - 0.988)中表现出优异的预测性能。在大多数情况下,SVR和RFR模型表现最佳,具有较低的均方根误差(RMSE)和平均绝对误差(MAE)。这些模型可用于更好地控制饮用水中不同的三卤甲烷,以保持符合监管要求,并将对人类的风险降至最低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验