Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, PR China.
School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85287-3005, USA.
Water Res. 2021 Apr 15;194:116964. doi: 10.1016/j.watres.2021.116964. Epub 2021 Feb 23.
Drinking water treatment plants (DWTPs) produce filter backwash water (FBW) and sedimentation sludge water (SSW) that may be partially recycled to the head of DWTPs. The impacts of key disinfection conditions, water quality parameters (e.g., disinfection times, disinfectant types and doses, and pH values), and bromide concentration on controlling the formation of trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), and haloacetamides (HAMs) during disinfection of FBW and SSW were investigated. Concentrations of most disinfection byproducts (DBPs) and associated calculated toxicity increased with extended chlorination for both FBW and SSW. During chlorination of both FBW and SSW, elevated chlorine doses significantly increased THM yields per unit dissolved organic carbon (DOC), but decreased HAN and HAM yields, with minimum effect on HAA yields. Chloramine disinfection effectively inhibited C-DBP formation but promoted N-DBPs yields, which increased with chloramine dose. Calculated toxicities after chloramination increased with chloramine dose, which was opposite to the trend found after free chlorine addition. An examination of pH effects demonstrated that C-DBPs were more readily generated at alkaline pH (pH=8), while acidic conditions (pH=6) favored N-DBP formation. Total DBP concentrations increased at higher pH levels, but calculated DBP toxicity deceased due to lower HAN and HAM concentrations. Addition of bromide markedly increased bromo-THM and bromo-HAN formation, which are more cytotoxic than chlorinated analogues, but had little impact on the formation of HAAs and HAMs. Bromide incorporation factors (BIFs) for THMs and HANs from both water samples all significantly increased as bromide concentrations increased. Overall, high bromide concentrations increased the calculated toxicity values in FBW and SSW after chlorination. Therefore, while currently challenging, technologies capable of removing bromide should be explored as part of a strategy towards controlling cumulative toxicity burden (i.e., hazard) while simultaneously lowering individual DBP concentrations (i.e., exposure) to manage DBP risks in drinking water.
饮用水处理厂(DWTP)会产生滤池反冲洗水(FBW)和沉淀池污泥水(SSW),这些水可能会部分回收至 DWTP 的前端。本研究考察了关键消毒条件、水质参数(如消毒时间、消毒剂类型和剂量、pH 值)和溴化物浓度对控制 FBW 和 SSW 消毒过程中三卤甲烷(THMs)、卤乙酸(HAAs)、卤乙腈(HANs)和卤乙酰胺(HAMs)形成的影响。对于 FBW 和 SSW,随着氯化时间的延长,大多数消毒副产物(DBPs)的浓度及其相关计算毒性均增加。在 FBW 和 SSW 的氯化过程中,较高的氯剂量会显著增加单位溶解有机碳(DOC)的 THM 生成量,但会降低 HAN 和 HAM 的生成量,对 HAA 的生成量影响最小。氯胺消毒能有效抑制 C-DBP 的形成,但会促进 N-DBPs 的生成,且随着氯胺剂量的增加而增加。氯胺消毒后的计算毒性随氯胺剂量的增加而增加,与加氯后的趋势相反。pH 值的影响研究表明,C-DBPs 更容易在碱性 pH(pH=8)条件下生成,而酸性条件(pH=6)有利于 N-DBP 的形成。在较高的 pH 值下,总 DBPs 浓度增加,但由于 HAN 和 HAM 浓度较低,计算出的 DBP 毒性降低。溴化物的添加显著增加了溴代 THM 和溴代 HAN 的形成,它们比氯化类似物更具细胞毒性,但对 HAAs 和 HAMs 的形成影响不大。两种水样中 THMs 和 HANs 的溴整合因子(BIFs)均随溴化物浓度的增加而显著增加。总的来说,高溴化物浓度会增加氯化后 FBW 和 SSW 的计算毒性值。因此,虽然目前具有挑战性,但应探索能够去除溴化物的技术,作为控制累积毒性负担(即危害)的策略的一部分,同时降低单个 DBPs 浓度(即暴露),以管理饮用水中的 DBP 风险。